Kí hiệu S là tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z − 1 + i = z + 2 i và điểm A là điểm biểu diễn số phức 1+2i. Biết rằng M ∈ S là điểm sao cho AM nhỏ nhất. Tung độ của điểm M là giá trị nào sau đây?
A. M − 1 ; 0
B. M 1 ; - 2
C. M − 1 ; 1
D. M 1 ; 1
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i - 1 = z + i Mô dul của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A (1;3) là
A. 10
B. 7
C. 2 3
D. 2 5
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i − 1 = z + i . Mô dun của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A(1;3) là
A. 10
B. 7
C. 2 3
D. 2 5
Cho số phức z thỏa mãn: z 1 + 2 i - z ¯ 2 - 3 i = - 4 + 12 i . Tìm tọa độ điểm M biểu diễn số phức z.
A. M 3 ; 1
B. M 3 ; - 1
C. M - 1 ; 3
D. M 1 ; 3
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số thực a thay đổi và số phức z thỏa mãn z a 2 + 1 = i - a 1 - a a - 2 i . Trên mặt phẳng tọa độ, gọi M là điểm biểu diễn số phức z . Khoảng cách giữa hai điểm M và I (-3; 4) (khi a thay đổi) là:
A. 4
B. 3
C. 5
D. 6
Cho số phức z thỏa mãn (2 - i)z = (2 + i)(1 - 3i). Gọi M là điểm biểu diễn của z. Khi đó tọa độ điểm M là.
A. M(3;1)
B. M(3;-1)
C. M(1;3)
D. M(1;-3)
Trên mặt phẳng Oxy, tìm tập hợp các điểm M biểu diễn số phức z thỏa mãn điều kiện 1 ≤ z - 2 i < 2
A. Hình tròn tâm I ( 0;2 ) và bán kính R = 2
B. Hình tròn tâm I ( 0;2 )và bán kính R = 1
C. Hình tròn tâm I ( 0;2 ) và bán kính R = 1 đồng thời trừ đi phần trong của hình tròn tâm I ( 0;2 ) bán kính R' = 1
D. Hình tròn tâm I ( 0;2 ) và bán kính R = 1 đồng thời trừ đi hình tròn tâm I ( 0;2 ) bán kính R' = 1