Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Cho số phức z=x+yi (x,y∈ R) thỏa mãn z+1-2i- z (1-i)=0. Trong mặt phẳng tọa độ Oxy, M là điểm biểu diễn của số phức z, M thuộc đường thẳng nào sau đây?
A. x+y-2=0.
B. x-y+2=0.
C. x+y-1=0.
D. x+y+1=0.
Tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện z - 1 + i = z + 2 i là đường nào trong các đường cho dưới đây?
A. Đường thẳng
B. Đường tròn
C. Elip
D. Parabo
Gọi M là điểm biểu diễn cho số phức z =x +yi(x,y ϵ ℝ) thỏa mãn |z +1 -2i|=|z|. Tập hợp điểm là đường thẳng nào sau đây?
A. 2x +4y +5 =0.
B. 2x -4y +5 =0.
C. 2x -4y +3 =0.
D. x -2y +1= 0
Cho số phức z= a+bi (a,b∈R). Biết tập hợp các điểm A biểu diễn hình học số phức z là đường tròn (C) có tâm I(4;3) và bán kính R=3. Đặt M là giá trị lớn nhất, m là giá trị nhỏ nhất của F=4a+3b-1. Tính giá trị M+ m.
A. M+ m=63
B. M+ m=48
C. M+ m=50
D. M+ m=41
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm M biểu diễn số phức z thỏa mãn điều kiện z + 1 ≤ 2 là
A. Đường tròn I - 1 ; 0 , bán kính R = 4
B. Đường tròn I 1 ; 0 , bán kính R = 2
C. Hình tròn tâm I 1 ; 0 , bán kính R = 2
D. Hình tròn tâm I - 1 ; 0 , bán kính R = 2
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm M biểu diễn số phức z thỏa mãn điều kiện z + 1 ≤ 2 là
A. Đường tròn I − 1 ; 0 , bán kính R=4
B. Đường tròn I 1 ; 0 , bán kính R=4
C. Đường tròn I 1 ; 0 , bán kính R=2
D. Đường tròn I − 1 ; 0 , bán kính R=2
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i - 1 = z + i Mô dul của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A (1;3) là
A. 10
B. 7
C. 2 3
D. 2 5
Trong mặt phẳng phức Oxy, các số phức z thỏa mãn z + 2 i − 1 = z + i . Mô dun của số phức z được biểu diễn bởi điểm M sao cho MA ngắn nhất với A(1;3) là
A. 10
B. 7
C. 2 3
D. 2 5