\(\text{Δ}=\left[2\left(m+1\right)\right]^2-4\left(m-1\right)\)
\(=4\left(m^2+2m+1\right)-4\left(m-1\right)\)
\(=4m^2+8m+4-4m+4\)
\(=4m^2+4m+8=\left(2m+1\right)^2+7>0\forall m\)
=>Phương trình có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right);x_1x_2=\dfrac{c}{a}=m-1\)
\(x_1^2+x_2^2=6\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=6\)
=>\(4\left(m+1\right)^2-2\left(m-1\right)=6\)
=>\(4m^2+8m+4-2m+2-6=0\)
=>\(4m^2+6m=0\)
=>\(2m^2+3m=0\)
=>m(2m+3)=0
=>\(\left[{}\begin{matrix}m=0\\m=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Delta'=\left(m+1\right)^2-\left(m-1\right)=\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0;\forall m\)
Pt luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m-1\end{matrix}\right.\)
\(x_1^2+x_2^2=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow4\left(m+1\right)^2-2\left(m-1\right)=6\)
\(\Leftrightarrow4m^2+6m=0\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-\dfrac{3}{2}\end{matrix}\right.\)