Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
꧁Gιʏuu ~ Cнᴀɴ꧂

Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)

a, Tìm m để hai nghiệm \(x_1,x_2\) của phương trình thỏa mãn đẳng thức \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\)

Nguyễn Lê Phước Thịnh
19 tháng 1 2022 lúc 23:17

\(\Delta=\left[-2\left(m+1\right)\right]^2-4\left(m^2-3\right)\)

\(=4m^2+8m+4-4m^2+12=8m+16\)

Để phương trình có hai nghiệm thì 8m+16>=0

hay m>=-2

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)

Theo đề, ta có: \(x_1^2+x_2^2+1=3x_1x_2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2+1=0\)

\(\Leftrightarrow\left(2m+2\right)^2-5\left(m^2-3\right)+1=0\)

\(\Leftrightarrow4m^2+8m+4-5m^2+15+1=0\)

\(\Leftrightarrow-m^2+8m+20=0\)

=>(m-10)(m+2)=0

=>m=10 hoặc m=-2

Nguyễn Huy Tú
19 tháng 1 2022 lúc 23:20

a, \(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=m^2+2m+1-m^2+3=2m+4\)

Để pt có 2 nghiệm x1 ; x2 khi \(\Delta'\ge0\Leftrightarrow m\ge-2\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2-3\end{matrix}\right.\)

Ta có : \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{1}{x_1x_2}=3\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=3\)

\(\Leftrightarrow\dfrac{4\left(m^2+2m+1\right)-2\left(m^2-3\right)+1}{m^2-3}=3\)

\(\Rightarrow2m^2+8m+11=3m^2-9\Leftrightarrow m^2-8m-20=0\Leftrightarrow m=10;m=-2\)(tm) 


Các câu hỏi tương tự
ĐỖ NV1
Xem chi tiết
....
Xem chi tiết
Ngọc Mai
Xem chi tiết
Lê Duy Thanh
Xem chi tiết
....
Xem chi tiết
DUTREND123456789
Xem chi tiết
....
Xem chi tiết
Hoàng Tiến Long
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết