Theo vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=10;x_1x_2=\dfrac{c}{a}=5\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{10}{5}=2\)
Theo Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=10\\x_1x_2=5\end{matrix}\right.\)
Ta có:\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{10}{5}=2\)
Ta có: \(\Delta'=\left(-5\right)^2-1.5=20>0\)
Định lí Vi - et:
\(\left[{}\begin{matrix}x_1+x_2=\dfrac{-\left(-10\right)}{1}=10\\x_1.x_2=\dfrac{5}{1}=5\end{matrix}\right.\)
Theo đề bài ta có:
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1.x_2}=\dfrac{10}{5}=2\)