Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để phương trình có hai nghiệm phân biệt thì -8m+24>0
=>m<3
x1+x2=2x1x2
=>2(2m-2)=4
=>2m-2=2
=>2m=4
=>m=2(nhận)
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để phương trình có hai nghiệm phân biệt thì -8m+24>0
=>m<3
x1+x2=2x1x2
=>2(2m-2)=4
=>2m-2=2
=>2m=4
=>m=2(nhận)
Cho phương trình \(x^2-2\left(m-1\right)x+4m+4=0\) Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1+x_2^2=5\)
Cho phương trình ẩn x : \(^{x^2-5x+m-2=0\left(1\right)}\)
a.Giải phương trình (1) khi m=-4
b.Tìm m để phương trình (1) có hai nghiệm dương phân biệt \(_{x_1,_{ }x_2}\)thỏa mãn hệ thức \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
Cho phương trình bậc hai: x2-2(m-1)x+2m-3=0 với m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn \(\sqrt{x_1}\)=2\(\sqrt{x_2}\)
b Tìm m để phương trình \(\left(m-1\right)x^2+2\left(m-1\right)x+m+3=0\) có hai nghiệm x1,x2 thỏa mãn \(x_1^2+x_1.x_2+x_2^2=1\)
c Tìm m để phương trình \(\left(m-1\right)x^2-2mx+m+2=0\) có hai nghiệm x1,x2 phân biệt thỏa mãn \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+6=0\)
d Tìm m để phương trình \(3x^2+4\left(m-1\right)x+m^2-4m+1=0\) có hai nghiệm phân biệt x1,x2 thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{2}\) (x1+x2)
cho phương trình bậc hai (ẩn x):
tìm m để phương trình luôn có 2 nghiệm phân biệt thỏa mãn
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
Cho phương trình: \(x^2\) + (m-1)x - m2 - 2 = 0 ( x là ẩn, m là tham số). Tìm giá trị của m để phương trình có hai nghiệm trái dấu thỏa mãn 2/\(x_1\)/ - /\(x_2\)/ = 4 ( biết \(x_1\) < \(x_2\))
Cho phương trình: x2 - (m + 2).x + 2m = 0. Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1.x_2}{4}\)