A) thay m = -1 vào (d) ta có y = -x + 2
Hoành độ giao điểm của (d) và (p) là no của pt
x2 = -x + 2
<=> x2 + x - 2 = 0
<=> (x -1)(x + 2) = 0
<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) => \(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)
Vậy giao điểm của (d) và (p) là: (1, 1); (-2, 4)
B) Giao điểm hoành độ của (d) và (p) là n0 của pt
x2 = mx + m + 3
<=> x2 - mx - (m + 3) = 0 (1)
Để (d) cắt (p) tại 2 điểm pb => (1) có 2 n0 pb <=> \(\Delta>0\)
<=> m2 + 4(m + 3) > 0
<=> m2 + 4m + 12 >0
<=> (m + 2)2 + 8 > 0 (LĐ)
Theo hệ thức Vi-ét ta có
x1 + x2 = \(\dfrac{-b}{a}\) = m
x1x2 = \(\dfrac{c}{a}\) = -(m + 3)
Theo đề bài ta có y1 + y2 = 6
<=> x12 + x22 = 6
<=> (x1 + x2)2 - 2x1x2 = 6
<=> m2 + 2m + 3 = 6
<=> m2 + 2m - 3 = 0
<=> (m - 1)(m + 3) = 0
<=>\(\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
Vậy m = 1 hoặc m = -3 thì (d) cắt (p) tại 2 điểm pb TM đề bài