Phương trình hoành độ của (d) và (P) :
\(x^2=\left(2m-1\right)x+4\left(1\right)\)
\(\Leftrightarrow x^2-\left(2m-1\right)x-4=0\)
\(\Delta=\left(2m-1\right)^2+16>0\) ⇒ Phương trình có hai nghiệm phân biệt với mọi m.
- A và B cách Oy nên \(x_A,x_B\) trái dấu ⇒ \(x_Ax_B< 0\Leftrightarrow P=\dfrac{c}{a}=-4< 0\)
⇒ Để thỏa đề bài, \(x_A+x_B=0\).
Theo định lí Vi-ét
\(x_A+x_B=-\dfrac{b}{a}=2m-1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\)
Vậy : (d) cắt (P) tại 2 điểm phân biệt với khoảng cách từ A và B đến trục Oy bằng nhau khi \(m=\dfrac{1}{2}\)