từ điểm M nằm ngoài (O;R) vẽ tiếp tuyến MA,MB và cát tuyến MCD (cắt đoạn OB). AB cắt MO,CD lần lượt tại H,E. Gọi K là trung điểm CD
a, c/m MAOB nội tiếp;OHEK nội tiếp
b, c/m MC*MD=ME*MK
Cho điểm M nằm ngoài đường tròn tâm O. Vẽ tiếp tuyếp MA, MB với đường tròn. Vẽ cát tuyến MCD không đi qua tâm O, OM cắt AB và (O) lần lượt tại H và I. Chứng minh
a) tứ giác MAOB nội tiếp
b) MC.MD=MA^2
c) OH.OM+MC.MD=MO^2
Cho (O,R), M nằm ngoài (O). Qua M kẻ tiếp tuyến MA, MB và cát tuyến MCD qua O, AB cắt CD tại H.
a) Chứng minh MA^2=MD.MC
b) Chứng minh MH.MO=MC.MD và C là tâm đường tròn nội tiếp tam giác MAB
c) Giả sử điểm M thay đổi ở ngoài (O) nhưng luôn thuộc đường thẳng d cố định. Chứng minh điểm H luôn thuộc 1 đường tròn cố định
Từ một điểm M nằm bên ngoài đường tròn (O; R) vẽ các tiếp tuyến MA, MB ( A, B là các tiếp điểm) và cát tuyến MCD ( điểm O nằm ngoài góc ACD)
a) Chứng mình tứ giác MAOB nội tiếp
b) chứng minh: MA.MB=MC.MD
c) Vẽ đường kính AE, OM lần lượt cắt EC và ED tại H và K. Chứng minh OH=OK.
Cho điểm M nằm ngoài (O). Vẽ các tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I. Cm: CI là phân giác góc MCH
Bài 5: Từ điểm M nằm ngoài đường tròn (O), kẻ tiếp tuyến MA và cát tuyến MCD sao cho MD nằm giữa hai tia MA và MO. a)Cm: MA?= MC.MD b)Vẽ dây AB vuông góc với OM tại H. Cm: MB là tiếp tuyến của đường tròn (O) c)Cm: MH.MO = MC.MD và MHC = MDÒ
Cho đường tròn (O) và điểm M nằm ngoài (O) . Từ M vẽ 2 tiếp tuyến MA, MB của (O). H là giao điểm của MO và AB. Qua M vẽ cát tuyến MCD của (O) sao cho MD cắt đoạn HB (MC<MD). qua C vẽ đường thẳng song song với BD cắt MB tại T và cắt AB tại F. Chứng minh C là trung điểm TF
Cho đường tròn (O,R) cố định.Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm).Gọi H là giao điểm của OM,AB
a) CM: OM vuông góc với AB và OH.OM=R2
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P),gọi I là trung điểm NP (I khác O).Chứng minh: A,M,O,I thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA,MB theo thứ tự C,D.Biết MA=5cm ,tính chu vi tam giác MCD
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA,MB lần lượt tại E,F.Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất
~Giải nhanh giùm mình nhé~
Xét đường thẳng (d) cổ định ở ngoài (0;R) (khoảng cách từ 0 đến (d) không nhỏ hơn R2). Từ một điểm M nằm trên đường thắng (d) ta dựng các tiếp tuyến MA, MB đến (O:R) ( A,B là các tiếp điểm) và dựng cát tuyên MCD (tia MC nằm giữa hai tia MO, MA và MC < MD). Gọi E là trung điểm của CD, H là giao điểm của AB và MO. a, Chứng minh: 5 điểm M,A,E,O,B cùng nằm trên một đường tròn. b, Chứng minh: MC.MD= MA² = MO² –R² . c. Chứng minh: Các tiếp tuyến tại C,D của đường tròn (O;R) cắt nhau tại một điểm nằm trên đường thắng AB. d. Chứng minh: Đường thắng AB luôn đi qua một điểm cố định. e, Chứng minh: Một đường thắng đi qua O vuông góc với MO cắt các tia MA, MB lần lượt tại PQ. Tìm GTNN của SMPO. Tìm vị trí điểm M để AB nhỏ nhất.
cho đường tròn O , từ điểm M nằm ngoài đường tròn vẽ 2 tiếp tuyến MA;MB. MO cắt AB tại H và cắt đường tròn tại I( I nằm giữa M và O).kẻ cát tuyến MCD .
a) chứng minh tứ giác AOMB nội tiếp
b) chứng minh OM.OH+MC.MD=OM^2
c) chứng minh CI là phân giác của góc MCH
( GIÚP MK CÂU C VỚI)