Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)
=>\(\dfrac{CB}{2R}=sin30=\dfrac{1}{2}\)
=>CB=R
Xét ΔOCB có OC=OB=CB
nên ΔOCB đều
=>\(\widehat{OCB}=60^0\)
ΔCAB vuông tại C
=>\(\widehat{CBA}+\widehat{CAB}=90^0\)
=>\(\widehat{CBA}+30^0=90^0\)
=>\(\widehat{CBA}=60^0\)
\(\widehat{CBA}+\widehat{CBM}=180^0\)(hai góc kề bù)
=>\(\widehat{CBM}+60^0=180^0\)
=>\(\widehat{CBM}=120^0\)
Xét ΔBCM có BC=BM
nên ΔBCM cân tại B
=>\(\widehat{BCM}=\dfrac{180^0-\widehat{CBM}}{2}=\dfrac{180^0-120^0}{2}=30^0\)
\(\widehat{OCM}=\widehat{OCB}+\widehat{BCM}\)
\(=60^0+30^0=90^0\)
=>MC là tiếp tuyến của (O)