13) để căn thức xác định \(\Rightarrow\dfrac{2x-4}{-2}\ge0\) mà \(-2< 0\Rightarrow2x-4\le0\)
\(\Rightarrow x-2\le0\Rightarrow x\le2\)
14) để căn thức xác định \(\Rightarrow-\dfrac{2}{x-2}\ge0\Rightarrow\dfrac{2}{x-2}\le0\)
mà \(2>0\Rightarrow x-2< 0\Rightarrow x< 2\)
15) để căn thức xác định \(\Rightarrow\dfrac{2\sqrt{15}-\sqrt{59}}{7-x}\ge0\)
Ta có: \(2\sqrt{15}=\sqrt{60}>\sqrt{59}\left(60>59\right)\Rightarrow2\sqrt{15}-\sqrt{59}>0\)
\(\Rightarrow7-x>0\Rightarrow x< 7\)
3) để căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}1-x\ge0\\3-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le1\\x\le3\end{matrix}\right.\Rightarrow x\le1\)
4) để căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}15-3x\ge0\\5-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le5\\x\le5\end{matrix}\right.\Rightarrow x\le5\)
5) để căn thức xác định \(\Rightarrow\left\{{}\begin{matrix}3x-9\ge0\\9-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge3\\x\le9\end{matrix}\right.\Rightarrow3\le x\le9\)
Bài 1:
1) \(\sqrt{2}< \sqrt{3}\)
2) \(\sqrt{3}< \sqrt{10}\)
3) \(2\sqrt{3}>2\sqrt{2}\)
4) \(3\sqrt{3}< 3\sqrt{5}\)
5) \(5\sqrt{2}>3\sqrt{2}\)
6) \(-5\sqrt{3}< -3\sqrt{3}\)