sửa
\(...\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
sửa
\(...\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Cho hpt sau:\(\left\{{}\begin{matrix}mx-y=3-m\\x-my=2m\end{matrix}\right.\)
Tìm m để hpt có No duy nhất x,y thỏa mãn
a.x+y=3
b.x nhỏ hơn 0.y lớn hơn 0
c.Tìm m để x nguyên , y nguyên
d.Tìm hpt liên hệ giữa x,y không phụ thuộc vào m
cho hệ phương trình:
\(\left\{{}\begin{matrix}mx+y=-1\\x+y=-m\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất thỏa mãn \(y^2=x\)
\(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
tìm m để HPT có nghiệm duy nhất (x,y) sao cho x+y>-5
cho hệ phương trình \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)(m là tham số ).Tìm m để hệ phương trình có nghiệm duy nhất (x;y) thỏa mãn \(\left\{{}\begin{matrix}x\ge2\\y\ge1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
1. tìm m để hpt có nghiệm duy nhất mà x và y trái dấu
2. tìm m để hpt có nghiệm duy nhất mà x và y là số nguyên
1,GTLN của \(P=\sqrt{x-2}+2\sqrt{x+1}-x+2013\)
2, nghiệm của hpt \(\left\{{}\begin{matrix}2\sqrt{x}+3y^3=28\\2y^3-5\sqrt{x}=6\end{matrix}\right.\) là \(\left(x,y\right)=\left(...;...\right)\)
3, cho hpt \(\left\{{}\begin{matrix}x-y=2\\mx+y=3\end{matrix}\right.\). tìm m để hpt có nghiệm (x,y) sao cho tích xy đạt GTNN. kết quả m =...
4,cho 2 số a, tm\(a^2+b^2=4a+bc+540\)
GTLN của \(P=23a+4b+2013\)
5, cho đa thức P(x) tm \(P\left(x-1\right)+2P\left(2\right)=x^2\). Giá trị của \(P\left(\sqrt{2013}-1\right)\) bằng ...
1,Cho hpt\(\left\{{}\begin{matrix}mx-y=2\\3x+my=3m\end{matrix}\right.\)(với m-tham số)
Xác định m để hpt có ngiệm (x;y)sao cho (x+y)x(m2+3)=-8
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y>0
\(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\)
tìm m để HPT có nghiệm (x;y) duy nhất thỏa mãn x<0 và y<0