a) gợi ý : cm \(\Delta AID=\Delta CLD\left(g.c.g\right)\)
có:AD=DC và \(\widehat{ADI}=\widehat{CDL}\left(=\widehat{DKL}\right)\)
b) \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{DL^2}+\dfrac{1}{DK^2}=\dfrac{1}{CD^2}\)không đổi (hệ thức lượng)
a) gợi ý : cm \(\Delta AID=\Delta CLD\left(g.c.g\right)\)
có:AD=DC và \(\widehat{ADI}=\widehat{CDL}\left(=\widehat{DKL}\right)\)
b) \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{DL^2}+\dfrac{1}{DK^2}=\dfrac{1}{CD^2}\)không đổi (hệ thức lượng)
Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ 2 tiếp tuyến Ax, By của nửa đường tròn (O) tại A và B. Qua điểm M thuộc nửa đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax, By theo thứ tự tại C và D.
a, Chứng minh tam giác COD vuông tại O
b, Chứng minh tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
cho đường tròn tâm O đk AB ,Qua B kẻ tiếp tuyến d của đường tròn. Gọi M là 1 điểm thây đổi trên d ( M khác B), AM cắt đường tròn tại C (C khác A) kẻ CH vuông góc với AB tại H.
a) cm CH song song MB
b)cm BC vuong góc AM
c) qua O kẻ đt vuông góc với BC tại K cắt MB tại I. cm IC là tiếp tuyến của đường tròn (O)
d) Tứ giác OBIC là hình gì khi diện tích ABC đạt giá trị lớn nhất.
cho đt tâm O đường kính AB = 2R. Qua B kẻ tiếp tuyến d của đt (O). gọi M thuộc d (M khác B). từ B kẻ đường thẳng vuông góc OM cắt OM tại H và cắt dt (O) tại C (C khác B)
a) cm OM.OH = R2
b) cm MC là tiếp tuyến
c) từ C kẻ CK vuông góc với d tại K. Gọi I là giao điểm của CK và OM. cm M di động trên d (M khác B) thì I luôn thuộc một đường cố định
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Giúp mình câu c với!! Bạn nào còn thức không ? mình cần gấp
Cho nửa đường tròn (O) đường kính AB. Điểm M di chuyển trên nửa đường tròn . tiếp tuyến M và B của nửa đường tròn (O) cắt nhau ở Đ . Qua O kẻ đường thẳng song song với MB , cắt tiếp tuyến tại M ở C và cắt tiếp tuyến tại B ở N
a. chứng minh tam giác CDN là tam giác cân
b. chứng minh AC là tiếp tuyến của nửa đường tròn (O)
c. Tìm vị trí của M trên nửa đường tròn để diện tích tam giác CDN đạt giá trị nhỏ nhất
Cho nửa đường tròn tâm O đường kính AB.C nằm trên nửa đường tròn tâm O.Vẽ (W) tiếp xúc với (O) tại C,tiếp xúc với AB tại D.AC,BC cắt (W) tại E và F.
a,EF là đường kính của (W)
b,C thay đổi thì CD là phân giác của góc ACB và CB đi qua 1 điểm cố định K
c,CK.KD không đổi
Cho tam giác đề ABC nội tiếp đường tròn (O;R).H là một điểm di động trên đoạn OA (H khác A).Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M.GỌi K là hình chiếu của M trên OB
a) CM: \(\widehat{HKM}=2\widehat{AMH}\)
b) Các tiếp tuyến của (O:R) tại A và B cắt tuyết tuyến tại M của (O:R) lần lượt tại D,E.OD,OE cắt AB lần lượt tại F,G
CM: OD.GF=OG.DE
c)Tìm GTLN của chu vi tam giác MAB theo R
Cho đường tròn (O;R) và các tiếp tuyến AB ;AC cắt nhau tại A nằm ngoài đường tròn ( B;C là các tiếp điểm ) . Gọi H là giao điểm của BC và OA
a) CMR: Oa vuông góc với BC và OH.OA=R^2
b) Kẻ đường kính BD của đường tròn (O) và kẻ đường thẳng CK vuuong góc với BD ( K thuộc BD) CMR AO sông song với CD và AC.CD=CK.AO
c) Gọi I là giao điểm của AD và CK . CMR tam giác BIK và tam GIác CHK có diện tích bằng nhau
cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Từ A vẽ 2 tiếp tuyến AB và AC (B,C là tiếp tuyến).Kẻ đường thẳng BD, đường thẳng vuông góc với BD tại O cắt đường thẳng DC tại E.
a. Chứng minh OA vông góc với BC và DC song song OA b. Chứng minh AEDO là hình bình hànhc. Đường thẳng BC cắt OA và OE lần lượt tại I và K. Chứng minh IK.IC+OI.IA=R^2