a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có
CD=BC
CF=BE
Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE
=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ
=>CE vuông góc với DF
a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có
CD=BC
CF=BE
Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE
=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ
=>CE vuông góc với DF
Cho hình vuông ABCD, gọi E, F thứ tự là trung điểm của AB, BC.
a) CMR: CE vuông góc với DF.
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng: AM=AD
Cho hình vuông ABCD . Gọi E, F theo thứ tự là trung điểm của AB, BC.
a) CMR : CF vuông góc với DF.
b) Gọi M là giao điểm của CE và DF . CMR : AM = AD
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. Chứng minh rằng CE vuông góc với DF.
Cho hình vuông ABCD. E, F theo thứ tự là trung điểm AB, BC.
a. CMR: CE vuông góc với DF.
b. M là giao điểm CE, DF. CMR: MA = MB.
Bài 3: Hình vuông ABCD. E thuộc AB: EA=EB, F thuộc CB: FC=FB. CMR:
a) CE vuông góc với DF
b) CE cắt DF tại M. CMR: AM=AD
Bài 4: Hình vuông ABCD, AB=BC=CD=DA=4cm. I là trung điểm của AD, E đối xứng với A qua BI, BE cắt CD ở F. Tính DF=?
Bài 5: Hình vuông ABCD. E, F, I theo thứ tự là trung điểm của BC, CD, DA. H, K theo thứ tự là giao điểm của IB, DE với AF. CMR:
a) AH=HK
b) IB vuông góc với AF
c) BA=BK
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AB
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD.
Cho hình vuông ABCD, gọi E, Ftheo thứ tự là trung điểm của AB, BC. CE cắt DF ở I
a) C/m: CE = DF và CE vuông góc DF
b) Kẻ AH vuông góc DF, AH cắt CD ở K. C/m: KD = KC
c) Gọi G là trung điểm AD, BG cắt AH ở M và cắt CE tại N. C/m: MNIH là hình vuông
d) C/m: AI = AB
Cho hình vuông ABCD, gọi E và F theo thứ tự là trung điểm của AB, BC; CE cắt DF tại M. Tính tỉ số Scmd/Sabcd