Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Thuy Chi (Fschool...

 

Cho hình thang cân ABCD có AB//CD và AB<CD. Gọi O là giao điểm của AD và BC, E là giao điểm của AC và BD

a) Chứng minh ΔOAB cân tại O

b) Chứng minh ΔABD=ΔBAC

c) Chứng minh EC=ED

d) O, E và trung điểm của DC thẳng hàng

Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 22:53

a: góc OAB=góc ODC

góc OBA=góc BCD

mà góc ODC=góc BCD

nên góc OAB=góc OBA

=>ΔOBA cân tại O

b: Xét ΔABD và ΔBAC có

BA chung

BD=AC

AD=BC

=>ΔABD=ΔBAC

c: ΔABD=ΔBAC

=>góc ABD=góc BAC

=>EA=EB

=>EC=ED

d: OA+AD=OD

OB+BC=OC

mà OA=OB và AD=BC

nên OD=OC

=>OE là trung trực của DC

=>O,E,trung điểm của DC thẳng hàng

Remind
15 tháng 7 2023 lúc 16:53

a) Chứng minh ΔOAB cân tại O:

Vì AB//CD, ta có ∠ABO = ∠CDO (do là góc đồng quy của hai đường thẳng AB và CD).

Tương tự, vì AB//CD, ta có ∠BAO = ∠DCO (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔOAB có hai góc bằng nhau với ΔCDO, nên ΔOAB cân tại O.

b) Chứng minh ΔABD = ΔBAC:

Vì AB//CD, ta có ∠ABD = ∠BAC (do là góc đồng quy của hai đường thẳng AB và CD).

Tương tự, vì AB//CD, ta có ∠ADB = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔABD có hai góc bằng nhau với ΔBAC, nên ΔABD = ΔBAC.

c) Chứng minh EC = ED:

Vì AC là đường chéo của hình thang ABCD, nên AC chia BD thành hai đoạn bằng nhau.

Do đó, AE = CE và DE = BE.

Vì ΔAEB và ΔCEB có hai cạnh bằng nhau (AE = CE và BE = DE) và góc AEB = góc CEB (do AB//CD), nên ΔAEB = ΔCEB.

Từ đó, ta có EC = ED.

d) Chứng minh O, E và trung điểm của DC thẳng hàng:

Gọi F là trung điểm của DC. Ta cần chứng minh OF//AB.

Vì F là trung điểm của DC, nên DF = FC.

Vì AB//CD, ta có ∠FDC = ∠BAC (do là góc đồng quy của hai đường thẳng AD và BC).

Tương tự, vì AB//CD, ta có ∠FCD = ∠CBA (do là góc đồng quy của hai đường thẳng AD và BC).

Do đó, ΔFDC có hai góc bằng nhau với ΔBAC, nên ΔFDC = ΔBAC.

Từ đó, ta có OF//AB.

Vậy, O, E và trung điểm của DC thẳng hàng.

 

Các câu hỏi tương tự
Khải Minh Bùi
Xem chi tiết
Ly Vũ
Xem chi tiết
MonaLancaster
Xem chi tiết
Nguyễn Hữu Nguyên
Xem chi tiết
Lê Vũ Nhã Linh
Xem chi tiết
Lê Thảo Vy
Xem chi tiết
Kim Hee Hyun
Xem chi tiết
Huyền Nguyễn
Xem chi tiết
trang nguyen
Xem chi tiết