Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng văn tiến

Cho hình thang ABCD có AB //CD có O là giao điểm 2 đường chéo qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H chứng minh OE=OH

Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 18:41

Xét ΔADC có OE//DC

nên \(\dfrac{OE}{DC}=\dfrac{AE}{AD}\left(1\right)\)

Xét ΔBDC có OH//DC

nên \(\dfrac{OH}{DC}=\dfrac{BH}{BC}\left(2\right)\)

Xét hình thang ABCD có EH//AB//CD

nên \(\dfrac{AE}{ED}=\dfrac{BH}{HC}\)

=>\(\dfrac{ED}{AE}=\dfrac{CH}{HB}\)

=>\(\dfrac{ED+AE}{AE}=\dfrac{CH+HB}{HB}\)

=>\(\dfrac{AD}{AE}=\dfrac{CB}{HB}\)

=>\(\dfrac{AE}{AD}=\dfrac{BH}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)

=>OE=OH

Kaarthik001
22 tháng 12 2023 lúc 18:44

Ta có \( \mathrm{OE} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \) và \( \mathrm{OH} = \frac{1}{2}(\mathrm{AC} - \mathrm{BD}) \).

Vì \( \mathrm{AB} / / \mathrm{CD} \), nên các tam giác \( \mathrm{ABE} \) và \( \mathrm{CDH} \) đồng dạng.

Do đó, \( \frac{\mathrm{AE}}{\mathrm{AD}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tương tự, \( \frac{\mathrm{BE}}{\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Tổng hai phương trình trên ta có \( \frac{\mathrm{AE}+\mathrm{BE}}{\mathrm{AD}+\mathrm{BA}} = \frac{\mathrm{CH}}{\mathrm{CD}} \).

Nhưng \( \mathrm{AD}+\mathrm{BA} = \mathrm{AD}+\mathrm{BC} = \mathrm{AC} \) và \( \mathrm{AE}+\mathrm{BE} = \mathrm{AE}+\mathrm{AD} = \mathrm{DE} \).

Vậy \( \frac{\mathrm{DE}}{\mathrm{AC}} = \frac{\mathrm{CH}}{\mathrm{CD}} \) hoặc \( \mathrm{DE} = \frac{\mathrm{CH} \cdot \mathrm{AC}}{\mathrm{CD}} \).

Lưu ý rằng \( \mathrm{CH} \) là độ dài đoạn thẳng vuông góc từ \( \mathrm{C} \) đến \( \mathrm{AB} \), nên \( \mathrm{CH} = \frac{\mathrm{CD} \cdot \mathrm{BH}}{\mathrm{BC}} \).

Do đó, \( \mathrm{DE} = \frac{\mathrm{CD} \cdot \mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC} \cdot \mathrm{CD}} \).

Hóa giản và ta có \( \mathrm{DE} = \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} \).

Xét tam giác \( \mathrm{BHE} \), ta thấy \( \mathrm{OE} \) là đoạn trung bình của \( \mathrm{BH} \), nên \( \mathrm{OE} = \frac{1}{2}\mathrm{BH} \).

Tổng kết lại, \( \mathrm{OE} = \frac{1}{2} \cdot \frac{\mathrm{BH} \cdot \mathrm{AC}}{\mathrm{BC}} = \frac{\mathrm{DE}}{2} = \mathrm{OH} \).

Vậy, chúng ta đã chứng minh được \( \mathrm{OE} = \mathrm{OH} \).


Các câu hỏi tương tự
Mon an
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
loveTeahyung
Xem chi tiết
Dũng Trung
Xem chi tiết
Minh tú Trần
Xem chi tiết
anhmiing
Xem chi tiết
Zero Two
Xem chi tiết
Khoi Minh
Xem chi tiết