Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=1, B C = a 2 , A A ' = a 3 . Gọi α là góc giữa hai mặt phẳng (ACD’) và (ABCD) (tham khảo hình vẽ). Giá trị tanα bằng
A. 3 2 2
B. 2 3
C. 2
D. 2 6 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Đường thẳng SA vuông góc với mặt phẳng đáy và S A = 2 a . Góc giữa đường thẳng SC và mặt phẳng (ABCD) là α . Khi đó t a n α bằng:
A. 2
B. 2 3
C. 2
D. 2 2
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A B = a ; B C = a 2 ; A A ' = a 3 Gọi α là góc giữa hai mặt phẳng (ACD’) và (ABCD) (tham khảo hình vẽ). Giá trị tanα bằng
A. 2 6 3
B. 2 3
C. 2
D. 3 2 2
Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường thẳng MC’ và mặt phẳng (ABC). Khi đó tan α bằng
A. 2 7 7
B. 3 2
C. 3 7
D. 2 3 3
Cho hình lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường thẳng MC’ và mặt phẳng (ABC). Khi đó tanα bằng
A. 2 7 7 .
B. 3 2 .
C. 3 7 .
D. 2 3 3 .
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường thẳng MC’ và mặt phẳng (ABC). Khi đó tan α bằng
A. 2 7 7 .
B. 3 2 .
C. 3 7 .
D. 2 3 3 .
Cho hình chóp S.ACBD có đáy ABCD là hình vuông cạnh a các mặt bên (SAB).(SAD) cùng vuông góc với mặt phẳng đáy, SA=a; góc giữa đường thẳng SC và mặt phẳng(SAB) bằng α . Khi đó tan α nhận giá trị nào trong các giá trị sau:
A. tan α = 1 2
B. tan α = 1
C. tan α = 3
D. tan α = 2
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, A B = 1 , B C = 2 , mặt bên SAC là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi α là số đo của góc giữa hai mặt phẳng (SAB), (ABC). Khi đó tanα bằng
A. 2
B. 3 2
C. 3 3
D. 1
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SA vuông góc với đáy (ABCD). Góc giữa đường thẳng SC và mặt phẳng (SAB) bằng α với tan α = 10 5 . Tính góc giữa đường thẳng SO và mặt phẳng (ABCD).
A. 60 °
B. 69 , 3 °
C. 90 °
D. 45 °