Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB=1,BC=2,AA'=3.. Tính sin của góc giữa đường thẳng A′C và mặt phẳng (A′BD).
A. 5 91 49
B. 3 14 49
C. 9 14 98
D. 11 70 98
Cho hình hộp ABCD.A’B’C’D’ có AB=A,B'C'= a 5 các đường thẳng A’B và B’C cùng tạo với mặt phẳng (ABCD) một góc 45 ° tam giác A’AB vuông tại B, tam giác A’CD vuông tại D. Tính thể tích của khối hộp ABCD.A’B’C’D’ theo a
A. 2 a 3
B. 2 a 3 3
C. a 3 6 2
D. a 3 6 6
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB=1,BC=2,AA'=3. Côsin góc giữa hai mặt phẳng (ACD′) và (BCD′A′) bằng
A. 2 10 7
B. 3 7
C. 3 35 35
D. 910 35
Cho hình hộp chữ nhật ABCD.A′B′C′D′ có AB=1,BC=2,AA'= 3 . Côsin góc giữa hai mặt phẳng (ACD′) và (BCD′A′) bằng
A. 57 19
B. 4 19 19
C. 6 4
D. 10 4
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có BC=a, B B ' = a 3 . Góc giữa hai mặt phẳng (A’B’C) và (ABC’D’) bằng
A. 60°.
B. 30°.
C. 45°.
D. 90°.
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, BC = a 2 , AA ' = a 3 . Gọi a là góc giữa 2 mặt phẳng (ACD’) và (ABCD) (tham khảo hình vẽ). Giá trị tana bằng:
A. 2
B. 2 6 3
C. 3 2 2
D. 2 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC = 2a, BC = a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
A. a 39 13
B. 3 a 13 13
C. a 39 26
D. a 13 26
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ° và A A ' = 7 a 2 Hình chiếu vuông góc của A lên mặt phẳng ABCD trùng với giao điểm của AC và BD.Tính theo a thể tích khối hộp ABCD.A’B’C’D’:
A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3