Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, B C D ^ = 120 ° , A A ' = 7 2 a . Hình chiếu vuông góc của A’ lên mạt phẳng (ABCD) trung với giao điểm của AC và BD Tính theo a thể tích khối hộp ABCD.A’B’C’D’?
A. 3 a 3
B. 4 a 3 6 3
C. 2 a 3
D. 3 a 3
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh , BD = 3a, hình chiếu vuông góc của B lên mặt phẳng (A’B’C’D’) là trung điểm của A’C’. biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD’C’) bằng 21 7 . Tính theo a thể tích khối hộp ABCD.A’B’C’D’
A. 9 a 3 4
B. a 3
C. 9 a 3 2
D. 3 a 3 2
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, BCD =120° và AA ' = 5 a 2 . Hình chiếu vuông góc của A' lên mặt phẳng ABCD trùng với giao điểm của AC và BD. Tính theo a thể thích khối hộp ABCD.A'B'C'D':
A. V = 2 2 a 2
B. V = 2 2 a 3
C. V = 6 2 a 3
D. V = 3 2 2 a 3
Cho hình hộp ABCD.A’B’C’D’ đáy ABCD là hình thoi cạnh a, góc B A D ^ = 60 ° . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) là điểm H thuộc AB thỏa mãn A H = B H 2 và góc giữa đường thẳng AA’ hợp với mặt phẳng (ABCD) một góc bằng 30 ° . Thể tích khối hộp ABCD.A’B’C’D’ là
A. a 3 2
B. 3 a 3 2
C. a 3 6
D. a 3 2 6
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi tâm O, cạnh bằng a, B’D’ = a 3 . Góc giữa CC’ và mặt đáy là 600 trung điểm H của AO là hình chiếu vuông góc của A’ lên mặt phẳng ABCD. Tính thể tích của hình hộp
A. 3 4 a 3
B. a 3 3 8
C. a 3 8
D. 3 a 3 8
Cho hình hộp ABCD.A'B'C'D' có đáy ABCD là hình thoi canh a, B C D ^ = 120 o và AA' = 7 a 2 . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A'CB'C'D'
A. V = 12 a 3
B. V = 3 a 3
C. V = 9 a 3
D. V = 6 a 3
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , B D = 3 a . Hình chiếu vuông góc của B trên mặt phẳng (A'B'C'D') trùng với trung điểm A’C’. Gọi α là góc giữa 2 mặt phẳng (ABCD) và (CDD'C'). Thể tích của khối hộp ABCD.A'B'C'D' bằng
A. 3 a 3 4
B. 9 3 a 3 4
C. 9 a 3 4
D. 3 3 a 3 4
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3 , hình chiếu vuông góc của B lên mặt phẳng (A’B’C’D’) là trung điểm của A’C’. Biết rằng côsin của góc tạo bởi hai mặt phẳng (ABCD) và (CDD’C’) bằng 21 7 . Tính theo a bán kính mặt cầu ngoại tiếp tứ diện A’BC’D’.
A. a
B. 2a
C. 3a
D. a 2
Cho lăng trụ ABCD.A’B’C’D’ với đáy ABCD là hình thoi, A C = 2 a , B A D ^ = 120 ∘ Hình chiếu vuông góc của điểm B trên mặt phẳng (A’B’C’D’) là trung điểm cạnh A’B’ góc giữa mặt phẳng (AC’D’) với mặt đáy là 60 độ. Tính thể tích V của lăng trụ ABCD.A’B’C’D’
A. V = 2 a 3 3
B. V = 3 a 3 3
C. V = a 3 3
D. V = 6 a 3 3