Cho hình hộp thoi ABCD.A'B'C'D' có tất cả các cạnh bằng a và A B C ^ = B ′ B A ^ = B ′ B C ^ = 60 o . Chứng minh tứ giác A'B'CD là hình vuông.
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau (hình hộp như vậy còn được gọi là hình hộp thoi). Chứng minh rằng AC ⊥ B'D'
Hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng nhau. Chứng minh rằng AC ⊥ B'D', AB' ⊥ CD' và AD' ⊥ CB'. Khi mặt phẳng (AA'C'C) vuông góc với mặt phẳng (BB'D'D)?
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60 o . Tính khoảng cách giữa hai đường thẳng AB' và A' C'
Cho hình hộp ABCD.A'B'C'D' có tất cả các cạnh đều bằng 1 và các góc phẳng đỉnh A đều bằng 60 0 . Tính khoảng cách giữa hai đường thẳng AB' và A'C'
A . 22 11
B . 2 11
C . 2 11
D . 3 11
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D. Biết AB=2a, AD=DC=a. Cạnh bên SA vuông góc với đáy và \(SA=a\sqrt{2}\). CHọn khẳng định sai?
A: \(\widehat{\left(SBC\right);\left(ABCD\right)}=45^0\)
B: \(\widehat{\left(SDC\right);\left(BCD\right)}=60^0\)
C: Giao tuyến của (SAB) với (SCD) song song AB
D: \(\left(SBC\right)\perp\left(SAC\right)\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh bằng a. SO vuông góc (ABCD) và \(SO=\dfrac{a\sqrt{3}}{2}\). Tính \(\widehat{\left(SBC\right);\left(ABCD\right)}\)
Cho \(SA\perp\left(ABCD\right)\) ,\(ABCD\) là hình thoi cạnh \(a\),\(SA=a\sqrt[]{2}\) ,\(\widehat{BAD}=60^o\) . Tính \(\widehat{(SAD),(SCD)}\).
Cho hình chóp S.ABCD có SA vuông góc (ABCD), ABCD là hình chữ nhật. AB=a, \(AD=a\sqrt{3}\). Biết rằng mp(SDC) tạo với đáy một góc bằng 60 độ.
a. Tính \(cos\left(\widehat{\left(SBC\right);\left(ABCD\right)}\right)\)
b: Tính \(tan\left(\widehat{\left(SBD\right);\left(ABCD\right)}\right)\)