Kẻ A H ⊥ B C và A H ⊥ S I . Khi đó A H ⊥ S B C ⇒ d A , S B C = A H
Ta có A I = a 3 2 (do ∆ A B C đều cạnh a)
và
S B A B C = S B A ^ = 60 o ⇒ S A = A B . tan 60 = a 3
Vậy d A S B C = A H = S A . A I S A 2 + A I 2 = a 15 5
Đáp án A
Kẻ A H ⊥ B C và A H ⊥ S I . Khi đó A H ⊥ S B C ⇒ d A , S B C = A H
Ta có A I = a 3 2 (do ∆ A B C đều cạnh a)
và
S B A B C = S B A ^ = 60 o ⇒ S A = A B . tan 60 = a 3
Vậy d A S B C = A H = S A . A I S A 2 + A I 2 = a 15 5
Đáp án A
Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy và góc tạo bởi SC và đáy bằng 60 ° . Tính khoảng cách h từ A tới mặt phẳng (SBC) theo a.
A. h = a 15 5
B. h = a 3 3
C. h = a 15 3
D. h = a 3 5
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và A B = a . Cạnh bên SA vuông góc với mặt phẳng đáy , góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 ° . Khoảng cách giữa hai đường thẳng AB và SC bằng
A. a
B. a 2 2
C. a 3 2
D. a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt phẳng (ABC), góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Gọi M là trung điểm của cạnh AB. Khoảng cách từ B đến mặt phẳng (SMC) bằng
A. a 3
B. a 39 13
C. a
D. a 2
Cho hình chóp S.ABC có ABC là tam giác đều cạnh a và SA vuông góc với đáy. Góc tạo bởi mặt phẳng (SBC) và mặt phẳng (ABC) bằng 30º. Khi đó thể tích của khối chóp S.ABC được tính theo a là:
A. a 3 12 .
B. a 3 3 8 .
C. a 3 3 24 .
D. a 3 4 .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng 3. Gọi α là góc giữa hai mặt phẳng (SBC) và (ABC), tính cos α khi thể tích khối chóp S . A B C nhỏ nhất.
A. cos α = 2 2
B. cos α = 1 3
C. cos α = 3 3
D. cos α = 2 3
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , cạnh bên SA vuông góc với đáy(ABC) . Biết góc tạo bởi hai mặt phẳng ( SBC) và (ABC)bằng 60 ° , tính thể tích của khối chóp .
A. V = a 3 3 24
B. V = 3 a 3 3 8
C. V = a 3 3 8
D. V = a 3 3 12
Cho hình chóp S.ABC có đáy là ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết hình chóp S.ABC có thể tích bằng a 3 . Tính khoảng cách d từ điểm A đến mặt phẳng (SBC):
A. d = 6 a 195 65
B. d = 4 a 195 195
C. d = 4 a 195 65
D. d = 8 a 195 195
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên bằng SA vuông góc với đáy, SA=a. Tính khoảng cách từ A đến mặt phẳng (SBC)?
A. d = a 3 2
B. d = a 2 2
C. d = a 6 2 .
D. d = a 6 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, AB = a, cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 ° khi và chỉ khi SA bằng
A. 3 a
B. 6 a 6
C. 6 a 4
D. 6 a 2