Cho hình bình hành ABCD, gọi O là giao điểm của 2 đường chéo AC và BD, từ O vẽ đường thẳng vuông góc với BD, đường thẳng này cắt AB và CD lần lượt tại M và N.
a. Chứng minh: OM = ON
b. Biết MN = 6cm; BD = 8cm. Tính diện tích tam giác OBM.
c. Chứng minh: tứ giác MBND là hình thoi.
d. Gọi E, F lần lượt là trung điểm của AB và BC. Hai đường thắng DE, DF cắt AC lần lượt tại P và Q. Chứng minh P, Q đổi xứng qua O.
a: Xét ΔMOB vuông tại O và ΔNOD vuông tại O có
OB=OD
\(\widehat{MBO}=\widehat{NDO}\)
Do đó: ΔMOB=ΔNOD
Suy ra: OM=ON
c: Xét tứ giác MBND có
O là trung điểm của MN
O là trung điểm của BD
Do đó: MBND là hình bình hành
mà MN\(\perp\)BD
nên MBND là hình thoi