Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ngọc ánh 2k8

Cho hình bình hành ABCD . Gọi I là trung điểm của Bc , Cho AI cắt DC tại E . 
Ch.minh tứ giác ABEC là hình bình hành

 

Minh Hiếu
3 tháng 9 2022 lúc 10:30

Xét tam giác AI B và tam giác EIC có:

\(\widehat{AIB}=\widehat{EIC}\) (đối đỉnh)

IC=IB( I trung điểm BC)

\(\widehat{ABI}=\widehat{ECI}\) (so le trong)

=> tam giác AIB= tam giác EIC (g.c.g)

=> IA=IE 

Xét tứ giác ABEI có

2 đường chéo AE và BC cắt nhau tại trung điểm I của mỗi đường

=> tứ giác ABEI là hình bình hành

Minh Hiếu
3 tháng 9 2022 lúc 10:32

loading...

Hquynh
3 tháng 9 2022 lúc 10:20

a, Xét tam giác CBA và tam giác ICE có

góc ABI = góc ICE ( do AB // CD - ABCD là hbh )

BI = IC ( do I là trung điểm BC)

góc AIB = góc EIC ( đối đỉnh)

=> 2 tam giác bằng nhau ( g-c-g)

=> AI = IE 

Xét tứ giác ABEC có

I là trung điểm AE

I là trung điểm BC

=> ABEC là hình bình hành ( đpcm)

Phương Thảo
3 tháng 9 2022 lúc 10:43

 Xét tam giác CBA và tam giác ICE có

góc ABI = góc ICE ( do AB // CD - ABCD là hbh )

BI = IC ( do I là trung điểm BC)

góc AIB = góc EIC ( đối đỉnh)

=> 2 tam giác bằng nhau ( g-c-g)

=> AI = IE 

Xét tứ giác ABEC có

I là trung điểm AE

I là trung điểm BC

=> ABEC là hình bình hành ( đpcm)

Phương Thảo
3 tháng 9 2022 lúc 10:47

 Xét tam giác CBA và tam giác ICE có

góc ABI = góc ICE ( do AB // CD  )

BI = IC ( do I là trung điểm BC)

góc AIB = góc EIC ( đối đỉnh)

=> 2 tam giác bằng nhau ( g-c-g)

=> AI = IE 

Xét tứ giác ABEC có

I là trung điểm AE

I là trung điểm BC

=> ABEC là hình bình hành ( đpcm)


Các câu hỏi tương tự
Huỳnh Thư Linh
Xem chi tiết
fairytail
Xem chi tiết
Anh Nguyễn Tú
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Bin ShinXiao
Xem chi tiết
Quang Huy Nguyễn
Xem chi tiết
Quang Huy Nguyễn
Xem chi tiết
An Cute
Xem chi tiết
Đỗ Hồng Phúc đz
Xem chi tiết