Cho hình bình hành ABCD có AB=2.BC. Gọi E, F lần lượt là trung điểm của AB, CD
a) Chứng minh tứ giác DEBF là hình bình hành; tứ giác AEFD là hình thoi
b) Cho DE cắt AF tại M, CE cắt BF tại N. C/m EF, MN, AC đồng quy
c) Tìm điều kiện của tứ giác ABCD để EMFN là hình vuông
d) Cho S ABCD=S . Tính S EMFN theo S
a: Xét tứ giác DEBF có
FD//BE
FD=BE
Do đó: DEBF là hình bình hành