a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hbh
=>AC cắt HK tại trung điểm của mỗi đường
=>A,O,C thẳng hàng
a: Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
=>ΔAHD=ΔCKB
=>AH=CK
mà AH//CK
nên AHCK là hình bình hành
b: AHCK là hbh
=>AC cắt HK tại trung điểm của mỗi đường
=>A,O,C thẳng hàng
Cho hình bình hành ABCD, dựng AH, CK lần lượt vuông góc DB (H, K thuộc BD)
a) Chứng minh tứ giác AHCK là hình bình hành
b) Lấy O là trung điểm của HK. Chứng minh A, O, C thẳng hàng
c) Cho AH cắt CD tại I, CK cắt AB tại M. CMP: Tứ giác AMCI là hình bình hành
d) O trung điểm IM
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành
Cho hình bình hành ABCD. Kẻ AH, CK vuông góc với đường chéo BD.
a) Chứng minh rằng AHCK là hình bình hành.
b) Gọi O là trung điểm của HK. Chứng minh rằng ba điểm A , O , C thẳng hàng
Cho hình bình hành ABCD , kẻ AH và CK vuông góc với BD
1, Chứng minh tứ giác AHCK là hình bình hành
2, kéo dài AH và CK cắt CD tại I và cắt AB tại F.Chứng minh AI=CF
3, chứng minh BH=CK
4, Gọi O là trung điểm của HK . chứng minh 3 điểm A,O,C thẳng hàng
5, chứng minh 3 đường thẳng AC BD và IF đồng quy
Bài 1: Cho hình bình hành ABCD , đường chéo BD . Kẻ AH và CK vuông góc với BD tại H và K . Chứng minh tứ giác AHCK là hình bình hành. Bài 2: Cho hình bình hành ABCD có M N, lần lượt là trung điểm của AB CD , . AN và CM cắt BD lần lượt tại E và F . a) Chứng minh AMCN là hình bình hành. ( Hình 6) b) Từ F kẻ đường thẳng song song với AB cắt AN tại G. Chứng minh BF FE ED . Bài 3: Cho tam giác ABC cân tại A , lấy điểm D trên cạnh AB , điểm E trên cạnh AC sao cho BD CE . a) Tứ giác BDEC là hì gì? Vì sao? b) Các điểm D E, ở vị trí nào thì BD DE EC
Giúp mình nhé!
Bài 1. Cho hình bình hành ABCD, đường chéo BD. Kẻ AH vuông góc với BD ở H, CK vuông góc với BD ở K. Chứng minh tứ giác AHCK là hình bình hành.
7. Cho hình bình hành ABCD, kẻ AM vuông góc với BD tại H, kẻ CN vuông góc với BD tại k.
a) chứng minh rằng: tứ giác AMCN là hình bình hành
b) Gọi I là trung điểm của MN. Chứng minh rằng: ba điểm A,I,C thẳng hàng
giúp mik vs
cho tam giác ACD(AD<AC). Gọi O là trung điểm AC, Trên đường thẳng DO lấy điểm B sao cho DO=OB
a). Chứng minh tứ giác ABCD là hình bình hành
b). Kẻ AH và CK lần lượt vuông góc với BD tại H và K. Chứng minh O là trung điểm HK
Cho hình bình hành ABCD có AB>AD. Từ A vẽ đường thẳng vuông góc với BD cắt DC tại H, từ C vẽ đường thẳng vuông góc với BD cắt AB tại K.
a, cm AHCK là hình bình hành
b,cm O là trung điểm của BD thì O cũng là trung điểm của HK