a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Cho hình bình hành ABCD có CD=2AD;N,M lần lượt là trung diểm các cạnh AB, CD
a) Tứ giác BMDN là hình gì? vì sao ?
b)Gọi giao điểm của BM,DN vs AC lần lượt là H,K. Chứng minh Ch = 1/3 AC
c) Tìm điều kiện của hình bình hành ABCD để BMDN là hình thoi
Cho hình bình hành ABCD có AB = 2.BC.Gọi M và N lần lượt là trung điểm của AB và CD.
a) Chứng minh: tứ giác BMDN là hình bình hành
b) Chứng minh: tam giác CMD vuông
c) Gọi gaio điểm của AN với DM là P và giao điểm của BN và CM là Q. Chứng minh tứ giác MPNQ là hình chữ nhật?
Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a) Tứ giác AECK là hình bình hành.
b) Ba điểm E, O, K thẳng hàng.
c) DN = NI = IB d) AE = 3KI
Bài 1. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của BC và AD. C/m tứ giác BMDN là hình bình hành.
Bài 2. Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P là giao điểm của DM và AN. Gọi Q là giao điểm của CM và BN. C/m tứ giác PMQN là hình bình hành.
Cho hình bình hành ABCD (AB > AD), phân giác góc A cắt cạnh CD tại M, phân giác góc C cắt cạnh AB tại N.
a) Chứng minh tứ giác AMCN là hình bình hành.
b) Gọi E là trung điểm AB, F là trung điểm CD, chứng minh rằng AC, MN, EF và BD đồng quy.
c) Đường chéo DB cắt AF, EC lần lượt tại I, K chứng minh DI = IK = KB.
Cho hình bình hành ABCD gọi M, N lần lượt là trung điểm của AB và CD
a, chứng minh MN//AD//BC
b, AN cắt DM tại H; BN cắt CM tại K. Chứng minh tứ giác HMKN là hình bình hành
Cho hình bình hành ABCD có AB = 8 cm,AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.a/ Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì
c/ Chứng minh IK\\CD
d/ (Lớp 8A làm thêm câu này).Hình bình hành ABCD cần thêm điều kiện gì thì tứ giác MINK là hình vuông? Khi đó ,diện tích của MINK bằng bao nhiêu?