Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Bài 4: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.
a. Các tứ giác AEFD, AECF là hình gì? Vì sao?
b. gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
c. Hình bình hành ABCD cần thêm điều kiện gì thì EMFN là hình vuông?
Bài 5: Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của điểm D trên cạnh AB, AC.
a. Chứng minh tứ giác ANDM là hình chữ nhật.
b. Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao?
c. Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN.
Bài 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi D là trung điểm của AB, E là điểm đối xứng với M qua D.
a. Chứng minh rằng điểm E đối xứng với điểm M qua AB.
b. Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c. Cho BC = 4cm, tính chu vi tứ giác AEBM.
Cho hình bình hành ABCD có AB=2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD. Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
Cho hình hình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng: EMNF là hình bình hành
mn giúp với ạ:
Cho hình bình hành ABCD có AB=2AD. Gọi E,F thứ tự là trung điểm của AB và CD
a, Các tứ giác AEFD, AECF là hình gì, Vì sao?
b, gọi M là giao điêm của AF và DE, gọi N là giao điểm của DF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
c, Hình bình hành ABCD nói trên có thêm điều kiện gì thì AENF là hình vuông ?
Hình bình hành ABCD có AB=2AD. Gọi F,F lần lượt là trung điểm của AB và CD
a) Chứng minh tứ giác AECF là hình bình hành
b) Chứng minh AF vuông góc với DE
c) Gọi M là giao điểm của BF và CE. Chứng minh EF=MN
Bài 8: Cho hình bình hành ABCD có AB = 2AD. Gọi E, F lần lượt là trung điểm của AB và CD. Gọi I là giao điểm của BF và DE, K là giao điểm của BF và CE. a/ Chứng minh tứ giác AECF là hình bình hành.
b/ Tứ giác AEFD là hình gì? Vì sao?
c/ Chứng minh tứ giác EIFK là hình chữ nhật.
d/ Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.
Bài 9: Cho hình bình hành AABC, O là giao điểm hai đường chéo. Lấy E, F sao cho AE = EF = FC.
a/ Chứng minh tứ giác BEDF là hình bình hành.
b/ Gọi M là giao điểm của BC và DF. Chứng minh FM = FD
c/ Gọi I là giao điểm của CD và BF, K là giao điểm của AB và DE. Chứng minh ba điểm K, O, I thẳng hàng.
Bài 1. Cho hình bình hành ABCD có AB = 2AD. Gọi E, F thứ tự là trung điểm của AB và CD.
a) Các tứ giác AEFD, AECF là hình gì?
b) Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật.
c) Hình bình hành ABCD nói trên có thêm điều kiện gì để EMFN là hình vuông?
Hình bình hành:
1. Cho tứ giác ABC, gọi E, F là trung điểm của AB và CD; M, N, P, Q lần lượt là trung điểm các đoạn AF, CE, BF và DE. C Chứng minh rằng MNPQ là hình bình hành.
2. Cho hình bình hành ABCD. Các điểm E, F thuộc đường chéo AC sao cho AE = EF = FC. Gọi M là giao điểm của BF và CD; N là giao điểm của DE và AB. Chứng minh rằng:
a. M, N theo thứ tự là trung điểm của CD, AB.
b. EMFN là hình bình hành.