$ABCD$ là hình chữ nhật thì $AC=BD$ chứ bạn sao độ dài lại khác nhau được? Bạn xem lại đề.
$ABCD$ là hình chữ nhật thì $AC=BD$ chứ bạn sao độ dài lại khác nhau được? Bạn xem lại đề.
Cho hình vuông ABCD có cạnh = 6a
a) tính độ dài các vecto sau \(\overrightarrow{u}=\overrightarrow{AB}-\overrightarrow{AC}\) ; \(\overrightarrow{v}=\overrightarrow{BC}+\overrightarrow{BD}\)
b) tính các tích vô hương sau : \(\overrightarrow{AB}.\overrightarrow{AC}\); \(\overrightarrow{BD}.\overrightarrow{AC}\);\(\overrightarrow{AB}.\overrightarrow{CD}\)
cho hcn ABCD có AB=ac và AD=\(a\sqrt{2}\).gọi K là trung điểm của cạnh AD .tính \(\overrightarrow{BK}.\overrightarrow{AC}\)
Cho hình thang vuông ABCD, đường cao AB=2a, đáy lớn BC=3a, đáy nhỏ AD=2a
a) Tính \(\overrightarrow{AB}.\overrightarrow{CD},\overrightarrow{BD}.\overrightarrow{DC},\overrightarrow{AC}.\overrightarrow{BD}\)
b) Gọi I là trung điểm CD. Tính \(\overrightarrow{AI}.\overrightarrow{BD}\). Suy ra góc giữa AI và BD
a) Cho tứ giác ABCD không phải là hình bình hành, AC cắt BD tại O có OB = OD. Gọi M, N lần lượt là trung điểm của AB và CD, MN cắt AC tại I. Chứng minh rằng \(\overrightarrow{MI}=\overrightarrow{IN}\)
b) Cho tứ giác ABCD có 2 đường chéo cắt nhau tại I. Biết \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\). Chứng minh rằng tứ giác ABCD là hình bình hành
Cho hình chữ nhật ABCD có AB = a, AD = a\(\sqrt{2}\)
a. Tính độ dài của vector \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\)
b. Xác định điểm M sao cho \(\overrightarrow{DC}\) +\(\overrightarrow{BD}\) +\(\overrightarrow{AB}\) = \(\overrightarrow{BM}\)
Cho hình thoi ABCD cạnh a, \(\widehat{BCD}\)= 60o . O là giao điểm của AC và BD . Tính \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|,\left|\overrightarrow{CB}+\overrightarrow{DC}\right|\)
Cho hình thoi ABCD tâm O có AC = 8, BD = 6. Chọn hệ trục toạ độ (O;\(\overrightarrow{i}\);\(\overrightarrow{j}\)) sao cho \(\overrightarrow{i}\) và \(\overrightarrow{j}\) lần lượt cùng hướng với \(\overrightarrow{OB}\), \(\overrightarrow{OC}\)
a. Tìm toạ độ của các đỉnh của hình thoi ABCD.
b. Gọi I là trung điểm của BC và I' đói xứng với I qua O. Chứng minh A, I', D thẳng hàng.
cho 4 điểm A,B,C,D thỏa mãn \(\overrightarrow{AB}\)=\(\overrightarrow{DC}\), phát biểu nào sau đây là sai?
A. AB=CD
B.\(\overrightarrow{AB}\) và \(\overrightarrow{CD}\)là hai vecto đối nhau
C. AC và BD nhận cùng một điểm làm trung điểm
D. ABCD là hình bình hành
Cho hình chữ nhật ABCD tâm O, AD =4, AD =5
a) Tính độ lớn \(\overrightarrow{BD}\)
b) Gọi M là trung điểm của CD. Chứng minh \(2\overrightarrow{OM}+\overrightarrow{OB}=\dfrac{1}{2}\overrightarrow{AC}\)