a: Để hàm số (1) là hàm số bậc nhất thì \(m^2+m-2< >0\)
=>\(m^2+2m-m-2< >0\)
=>\(\left(m+2\right)\left(m-1\right)< >0\)
=>\(\left\{{}\begin{matrix}m+2< >0\\m-1< >0\end{matrix}\right.\Leftrightarrow m\notin\left\{-2;1\right\}\)
Để hàm số nghịch biến thì (m+2)(m-1)<0
TH1: \(\left\{{}\begin{matrix}m+2>0\\m-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-2\\m< 1\end{matrix}\right.\)
=>-2<m<1
TH2: \(\left\{{}\begin{matrix}m+2< 0\\m-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)
=>Loại
b: Để hàm số (1) là hàm hằng thì \(m^2+m-2=0\)
=>(m+2)(m-1)=0
=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)