\(f\left(x\right)=\left(x+1\right)\cdot e^x\)
=>\(f'\left(x\right)=\left(x+1\right)'\cdot e^x+\left(x+1\right)\cdot\left(e^x\right)'\)
=>\(f'\left(x\right)=e^x+e^x\left(x+1\right)\)
\(f'\left(0\right)=e^0+e^0\left(0+1\right)=1+1=2\)
\(f\left(x\right)=\left(x+1\right)\cdot e^x\)
=>\(f'\left(x\right)=\left(x+1\right)'\cdot e^x+\left(x+1\right)\cdot\left(e^x\right)'\)
=>\(f'\left(x\right)=e^x+e^x\left(x+1\right)\)
\(f'\left(0\right)=e^0+e^0\left(0+1\right)=1+1=2\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{e^{4-3x}-e^4}{x}khix\ne0\\3ae^4khix=0\end{matrix}\right.\) . Giá trị của a để f(x) liên tục tại x = 0 là
cho hàm số f(x)=\(x^2-4x+3\)
tìm gtri tham số m để \(\left|f\left(\left|x\right|\right)-1\right|=m\) có 8 nghiệm phân biệt
đáp án:
A. \(m< 1\)
B.\(0\le x\le2\)
C.1<x<2
D.0<x<1
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0
cho hàm số \(y=f\left(x\right)\) liên tục trên R thỏa
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\) , \(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=-\dfrac{1}{2}\)
tìm số đường tiệm cận củ đồ thị hàm số đã cho
\(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=+\infty\)
\(\)
Cho hàm số \(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{^3\sqrt{ax+1}-\sqrt{1-bx}}{x}\left(1\right)\\3a-5b-1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)khix\ne0\)
(2) \(khix=0\)
Tìm điều kiện của tham số a và b để hàm số trên liên tục tại điểm x=0
Cho hàm số $f\left( x \right)={{x}^{3}}+3$ có đồ thị $\left( C \right)$. Viết phương trình tiếp tuyến của đồ thị $\left( C \right)$ tại điểm có hoành độ ${{x}_{0}}=1$.
cho \(y=f\left(x\right)=\left(m-3\right)x-2m+1\)
tìm đk của tham số m để \(f\left(x\right)>0\) \(\forall x\in\left[3;4\right]\)
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}2x^2+3x\left(khix\le1\right)\\ax+2\left(khix>1\right)\end{matrix}\right.\)Gia trị của a để f(x) liên tục trên toàn trục số?
(giải cách tự luận)
2. Gía trị của a để các hàm số \(f\left(x\right)=\left\{{}\begin{matrix}x+2a\left(khix< 0\right)\\x^2+x+1\left(khix\ge0\right)\end{matrix}\right.\)liên tục tại x=0
3. Chứng minh phương trình \(x^4-x-2=0\) luôn có nghiệm thuộc khoảng (1;2)
Tìm tất cả hàm số \(f:R\rightarrow R\) thoả mãn:
\(f\left(xf\left(y\right)-y\right)+f\left(xy-x\right)+f\left(x+y\right)=2xy,\forall x,y\in R\)
Em chỉ mới chứng minh được f là hàm lẻ ạ, mong mọi người giúp :'(