B1: Cho \(0\le a,b,c\le2\) thỏa mãn \(a+b+c=3\). CMR: \(a^2+b^2+c^2\le5\)
B2: Cho \(a,b\ge0\) thỏa mãn \(a^2+b^2=a+b\). TÌm GTLN \(S=\dfrac{a}{a+1}+\dfrac{b}{b+1}\)
B3: CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\forall x\ne y,xy\ne0\)
a,b,c là các số thực dương thỏa mãn a+b+c=1. CMR: \(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}< =9\)
Cho 3 số dương a,b,c thỏa mãn
\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\)
CMR:\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{1}{2}\sqrt{\dfrac{2011}{2}}\)
Cho hai số thực a,ba,b thỏa mãn \(a^2+4ab-5b^2=0\)(a≠b,a≠−b) Tính giá trị của biểu thức
Q=\(\dfrac{2a-b}{a-b}+\dfrac{3a-2b}{a+b}\)
Cho 3 số nguyên dương a , b, c thỏa mãn : \(a^2+b^2+c^2=\dfrac{5}{3}\)
CM BĐT : \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}< \dfrac{1}{abc}\)
Cho 2 số dương a,b thỏa mãn a+b=1
Chứng minh: A= \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\ge9\)
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)
Cho 2 bộ số a,b,c thỏa mãn a+b+c=0. CMR:
\(\dfrac{a^5+b^5+c^5}{5}=abc.\dfrac{a^2+b^2+c^2}{2}\)
Cho a, b, c là ba số dương thỏa mãn \(abc\)=1. Chứng minh rằng:
\(\dfrac{1}{a^3\left(b+c\right)}\)+\(\dfrac{1}{b^3\left(a+c\right)}\)+\(\dfrac{1}{c^3\left(a+b\right)}\)≥\(\dfrac{3}{2}\)
cho a,b,c là 3 số ≠ 0 thỏa mãn a+b+C=2016 và \(\dfrac{\text{1}}{\text{a}}\)+\(\dfrac{\text{1}}{\text{b}}\)+\(\dfrac{\text{1}}{\text{c}}\)=\(\dfrac{\text{1}}{\text{2016}}\)
CMr: trong ba số a,b,c tồn tại 2 số đối nhau