Cho tam giác abc trọng tâm g
Dựng vecto ad = gc; vecto de= gb
Cm vecto ge = vecto 0
Cho tam giác ABC trọng tâm G.Gọi I là trung điểm của AD chứng minh rằng vectơ AB +AC +6GI=vecto 0
Cho tứ giác ABCD, chứng minh rằng nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) và \(\overrightarrow{AD}=\overrightarrow{BC}\).
Bài 1 : Cho tứ giác ABCD chứng minh nếu vectơ AB = vectơ DC thì vectơ AD = vectơ BC
Bài 2: Cho tứ giác ABCD chứng minh tứ giác đó là hình bình hành khi và chỉ khi vectơ AB = vectơ DC
1)Cho tam giác ABC nhọn nội tiếp đường tròn tâm O trực tâm H,trọng tâm G,vẽ đường kính AD
a)CMR vecto HB+HC=HD
b)Goị E đối xứng của H qua O.CMR: vecto EH+EB+EC=vecto HE
2)Cho tam giác ABC nội tiếp đường tròn (o) H là trực tâm vẽ đường kính AD.CMR:G,H,O thẳng hàng
Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm
Cho hình bình hành ABCD tâm I : Có bao nhiêu vecto cùng phương với vecto AI