Cho O là trọng tâm của tam giác ABC chứng minh rằng vecto \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=0\)
Cho tam giác ABC
a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0
b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG
Cho tam giác ABC có D,E,F lần lượt là trung điểm của BC, CA, AB. Chứng minh vectơ EF = vectơ CD theo 2 cách.
Cho tam giác abc trọng tâm g
Dựng vecto ad = gc; vecto de= gb
Cm vecto ge = vecto 0
Cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là trung điểm của các cạnh AB,CD,AD,BC. Chứng minh:
a) vectơ MP = vectơ QN
b) vectơ MQ = vectơ PN
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm
Bài 1 : Cho tứ giác ABCD chứng minh nếu vectơ AB = vectơ DC thì vectơ AD = vectơ BC
Bài 2: Cho tứ giác ABCD chứng minh tứ giác đó là hình bình hành khi và chỉ khi vectơ AB = vectơ DC
Cho tam giác ABC có M là trung điểm AB, N là trung điểm AC, P là trung điểm BC
Chỉ ra các vectơ bằng nhau ( giải thích)
khái niệm
cho 2 vector a và b từ một điểm O bất kì vẽ vecto OA = a , từ điểm A vẽ vector AB = b , khi đó OB được gọi là tổng của vecto a và b ( OB = a + b)
giải bài tập sau theo khái niệm trên
cho tam giác ABC là tam giác đều, cạnh có độ dài = a trọng tâm g vẽ và tính độ dài
AB + BC / AB + AC / AI + BC / BA + CI / AB + CB /
mọi người có thể giải dùm mình bài này với giải thích được tí ko ạ, mình chỉ con mình học ạ