P(x)=x^5+x^3+x^2+x-2
Q(x)=4x^5+x^4+x^3+x^2-1
P(x)+Q(x)
=x^5+x^3+x^2+x-2+4x^5+x^4+x^3+x^2-1
=5x^5+x^4+2x^3+2x^2+x-3
P(x)-Q(x)
=x^5+x^3+x^2+x-2-4x^5-x^4-x^3-x^2+1
=-3x^5-x^4+x-1
P(x)=x^5+x^3+x^2+x-2
Q(x)=4x^5+x^4+x^3+x^2-1
P(x)+Q(x)
=x^5+x^3+x^2+x-2+4x^5+x^4+x^3+x^2-1
=5x^5+x^4+2x^3+2x^2+x-3
P(x)-Q(x)
=x^5+x^3+x^2+x-2-4x^5-x^4-x^3-x^2+1
=-3x^5-x^4+x-1
P(x) = x5 – 2 + x + x3 + x2 ; Q(x) = – 1 + 4x5 + x4 + x2 + x3
Sắp xếp các hạng tử mỗi đa thức theo lũy thừa tăng dần của biến.
Tính P(x) + Q(x) và P(x) – Q(x).
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
cho đa thức :P(x)=1+3x5-4x2+x5+x3-x2+3x3
Q(x)=2x5-x2+4x5-x4+4x2-5x
a)Thu gọn và sắp sếp các hạng tử của đa thức theo lũy thừa tăng của biến
b) Tính P(x)+Q(x);P(x)-Q(x)
c)Tính giá trị của P(x)+Q(x)tại x=-1
d)Chứng tỏ rằng x=0 là nghiệm của đa thức Q(x) nhưng không phải là nghiệm của đa thức P(x)
giúp với ạ
cho đa thức :P(x)=1+3x5-4x2+x5+x3-x2+3x3
Q(x)=2x5-x2+4x5-x4+4x2-5x
a)Thu gọn và sắp sếp các hạng tử của đa thức theo lũy thừa tăng của biến
b) Tính P(x)+Q(x);P(x)-Q(x)
c)Tính giá trị của P(x)+Q(x)tại x=-1
d)Chứng tỏ rằng x=0 là nghiệm của đa thức Q(x) nhưng không phải là nghiệm của đa thức P(x)
Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
Cho 2 đa thức: P(x)= 2x4 + 3x3 + 3 - 3x2 + 3x + 4x2 - x4 - x
Q(x)= x4 - 2x + 4 + x3 + 3x2 + 4x - 2 - x2
a, Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b, Tính P(x) + Q(x) , P(x) - Q(x)
Cho các đa thức : P(x) = x5 - 3x2 + 7x4 - 9x3 + x2 - \(\dfrac{1}{4}\)x ; Q(x) = 5x4 - x5 + x2 - 2x3 + 3x2 - \(\dfrac{1}{4}\)
a ) sắp xếp hạng tử của mỗi đa thức trên theo lũy thừa giảm của biến
b ) Tính P(x) + Q(x)
Bài 1 Cho hai đa thức: P(x) = 4x3 – 3x + x2 + 7 + x
Q(x) =– 4x3 + 2x – 2 + 2x – x2 – 1
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b) Tính M(x) = P(x) + Q(x) và N(x) = P(x) – Q(x)
c) Tìm nghiệm của đa thức M(x)
Cho
f ( x ) = x 2 + 2 x 3 - 7 x 5 - 9 - 6 x 7 + x 3 + x 2 + x 5 - 4 x 2 + 3 x 7 g ( x ) = x 5 + 2 x 3 - 5 x 8 - x 7 + x 3 + 4 x 2 - 5 x 7 + x 4 - 4 x 2 - x 6 - 12 h ( x ) = x + 4 x 5 - 5 x 6 - x 7 + 4 x 3 + x 2 - 2 x 7 + x 6 - 4 x 2 - 7 x 7 + x
Thu gọn và sắp xếp các đa thức trên theo lũy thừa tăng của biến.
Cho hai đa thức:
P(x)=2x3+3x3+3x2+2+6x+1;𝑷𝒙=𝟐𝒙𝟑+𝟑𝒙𝟑+𝟑𝒙𝟐+𝟐+𝟔𝒙+1;
Q(x)=3x2+5x−1−x2+2+x3.𝑸(𝒙)=𝟑𝒙𝟐+𝟓𝒙−𝟏−𝒙𝟐+𝟐+𝒙𝟑.
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến.
b) Tính
P(x)+Q(x).𝑷𝒙+𝑸𝒙.