Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC = BD.
Cho đường tròn (O) và hai điểm A, B nằm bên ngoài đường tròn. Dựng đường kính COD sao cho AC=BD.
Cho đường tròn (O;R) và một điểm A nằm bên ngoài đường tròn(O)sao cho OA=2R.Bẽ các tiếp tuyến AB,AC (B,C là các tiếp điểm).Kẻ đường kính BD của (O) tiếp tuyến tại D của (O) cắt BC tại E,AO cắt O tại I a.C/m tứ giác ABOC nội tiếp, định tâm và bán kính của đường tròn này b.C/m BC.BE+AI.AO=6R²
Cho đường tròn tâm O , bán kính R và điểm A nằm ngoài đường tròn sao cho OA > 2R . Từ A kẻ hai tiếp tuyến AB , AC đến đường tròn (O) (B,C là 2 tiếp điểm ) . Trên cung nhỏ BC lấy điểm D sao cho CD < BD , tia AD cắt đường tròn (O) tại điểm E (E khác D). Qua B vẽ đường thẳng song song với AE cắt (O) tại K , CK cắt DE tại M.Vẽ tia AC cắt BE tại F .c/m nếu E là trung điểm của BF thì BC=DE
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Dùng thước và compa, hãy dựng các điểm B và C thuộc đường tròn (O) sao cho AB và AC là các tiếp tuyến của đường tròn (O).
Từ điểm A nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến AB với (O)( B là tiếp điểm). Lấy điểm
C thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
Chứng minh OA//CE.
Từ điểm C nằm bên ngoài đường tròn tâm O, kẻ tiếp tuyến CB với (O)( B là tiếp điểm). Lấy điểm A thuộc đường tròn (O) sao cho AC=AB, Vẽ đường kính BE.
Chứng minh OA//CE.
Cho đường tròn (O) bán kính bằng 2cm. Một đường thẳng đi qua điểm A nằm bên ngoài đường tròn và cắt đường tròn tại B và C, trong đó AB = BC. Kẻ đường kính COD. Tính độ dài AD.