Từ điểm M nằm ngoài (O) vẽ các tiếp tuyến MA,MB (A, B là các tiếp điểm).Lấy điểm C thuộc cung AB lớn, kẻ AK vuông góc BC tại K. Gọi I là trung điểm của AK, CI cắt (O) tại E khác C. Tia ME cắt (O) tại F
a) CM: OM là tiếp tuyến của đường tròn ngoại tiếp tam giác MEA
b). CM: khi C di chuyển trên cung AB lớn thì EF có độ dài không đổi
Từ điểm A nằm ngoài (O). Kẻ 2 tiếp tuyến AB,AC đến (O) (B,C là tiếp điểm). BC cắt AO tại H. D thuộc cung lớn BC (BC<CD). K là hình chiếu của B lên CD. I là trung điểm BK. DI cắt (O) tại E khác D. AE cắt (O) tại F khác E
a) chứng minh: ABOC nội tiếp và H là trung điểm BC
b) Chứng minh: OHEF nội tiếp là HB là tia phân giác góc EHF
c) Chứng minh BEHI nội tiếp và C,O,F thẳng hàng
từ A nằm ngoài ( O ) kẻ 2 tiếp tuyến AB và AC ( O) . AO giao với BC tại H
a, CMR : 4điểm A ,O , B , C cùng thuộc 1 ( O )
b, kẻ đường kính CD , kẻ DA cắt ( O ) tại E . CMR : OA vuông BC và AE . AD = AH . AO
c, gọi M là trung điểm AC , BC cắt ME tại N , DE cắt BC tại I . CMR : EM là tiếp tuyến ( O ) ,OI vuông với AN
Lấy điểm M nằm ngoài đường tròn (O;R) kẻ tiếp tuyến MA đến đường tâm O, A là tiếp điểm . Kẻ AB vuông góc MO, cắt MO tại H ( B thuộc (O))
a/CM : MB là tiếp tuyến
b/CM: MB2=MH.MO
c/Trên tia đối của tia BA lấy điểm Q. Vẽ 2 tiếp tuyến QD, QE đến đường tròn (O) (D, E là tiếp điểm ). CMR : M, D, E thẳng hàng
Mn ơi giúp mik câu c vs
Cho đường tròn (O; 3cm) và điểm M nằm ngoài đường tròn sao cho OM = 5cm. Kẻ tiếp tuyến MB với đường tròn (O) ( B là tiếp điểm ). Từ B kẻ đường thẳng vuông góc MO tại N cắt đường tròn (O) tại C.
a) CM: MC là tiếp tuyến của đường tròn (O).
b) Tính độ dài MN và NO.
c) Qua điểm A trên cung nhỏ BC kẻ tiếp tuyến với đường tròn (O), tiếp tuyến này cắt MB, MC lần lượt tại D và E. Tính chu vi tam giác MED.
d) Tính diện tích tứ giác MBOC.
cho đtròn (O) và điểm M nằm ngoài đtòn. Qua M kẻ tiếp tuyến MA của (O) ( A là tiếp điểm). Qua A kẻ đường thẳng song song với MO, đường thẳng này cắt (O) tại C ( C khác A). Đường thẳng MC cắt (O) tại B ( B khác C). OH⊥BC tại H
a. cm tg MAHO nt.
b. cm \(\dfrac{AB}{AC}=\dfrac{MA}{MC}\)
c. cm \(\widehat{BAH}=90^0\)
d. vẽ đkính AD của (O). cm \(\Delta ACH\sim\Delta DMO\)
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.
cho đường tròn tâm O,từ điểm A ở bên ngoài(O) kẻ các tiếp tuyến AB,AC(B,C là các tiếp điểm)M thuộc cung nhỏ BC. kẻ MI,MH,MK lần lượt vuông góc BC,CA,AD.MB cắt IK tại E,MC cắt IH tại F
a)4 điểm B,I,M,K nằm trên một đừng tròn
b)MI2=MH.MK
c)EF vuông góc MI
Cho đường tròn (O; R). Điểm M ở bên ngoài đường tròn sao cho OM= 2R. Kẻ hai tiếp tuyến MA, MB tời đường tròn (A;B là các tiếp điểm). Nối OM cắt AB tại H. Hạ HD vuông góc MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C của đường tròn (O;R) cắt MA, MB lần lượt tại E và F. Đường tròn đường kính BM cắt BD tại I. Gọi K là trung điểm của OA. Chứng minh ba điểm M, I, K thẳng hàng