a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB//CD và AB=CD
Ta có: AB//CD
=>BE//CD
Ta có: AB=CD
AB=BE
Do đó: CD=BE
Xét tứ giác CDEB có
CD//EB
CD=EB
Do đó: CDEB là hình bình hành
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AB//CD và AB=CD
Ta có: AB//CD
=>BE//CD
Ta có: AB=CD
AB=BE
Do đó: CD=BE
Xét tứ giác CDEB có
CD//EB
CD=EB
Do đó: CDEB là hình bình hành
Bài 2. Cho ΔABC vuông tại A có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a, Chứng minh ABCD là hình chữ nhật.
b, Lấy điểm E sao cho B là trung điểm của AE. Chứng minh BEDC là hình bình hành.
c, EM cắt BD tại K. Chứng minh EK = 2KM.
Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b)Lấy điểm E sao cho B là trung điểm của AE. Chứng minh tứ giác BEDC là hình bình hành. c) Lấy điểm K thuộc đoạn thẳng BD sao cho KD = 2BK. CM: EK, AC, BD là đồng quy
6. Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b) Gọi E là điểm đối xứng của A qua B. Chứng minh tứ giác BEDC là hình bình hành.
c) EM cắt BD tại K. Chứng minh: EK = 2KM.
Cho tam giác ABC vuông tại A. Biết AB = 3 cm, AC = 4 cm. Lấy điểm D thuộc cạnh BC; E là trung điểm của cạnh AC; trên tia đối của tia ED lấy F sao cho E là trung điểm của DF.
a) Chứng minh tứ giác AFCD là hình bình hành.
b) Qua E kẻ EG //AB. Chứng minh GE vuông góc với AC.
c) Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A có AB=AC/2. Gọi M,K lần lượt là trung điểm hai cạnh BC và AC. Trên tia đối của tia MA lấy E sao cho M là trung điểm cạnh AE
a) Với MK=3cm. Tính AB và diện tích tam giác ABC
b) CM: ABEC là hcn
C) Trên tia đối của tia KM lấy N sao cho K là trung điểm cạnh MN. CM: AMCN là hthoi
d) Trên cạnh BE lấy H sao cho BH=1/4BE, từ E vẽ đường vuông góc với đường thẳng AH tại F. CM: BFEC là hthang cân
Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. Trên tia đối của tia MA, lấy điểm D sao cho MD=MA
a) C/m ABDC là hình chữ nhật
b) Kẻ AH vuông góc BC tại H, kẻ DK vuông góc BC tại K. C/m AHDK là hình bình hành
giúp e câu b với ạ
Bài 3: Cho tam giác ABC, trung tuyến AM. Trên tia đối của tia MA lấy D sao cho MD = MA.
a) Cm: AB // CD và AB = CD
b) Gọi E, F lần lượt là trung điểm của AC, BD. AF cắt BC tại I, DE cắt BC tại K. Cm I là trọng tâm ABD, K là trọng tâm ACD.
c) Cm BI = IK = KC
d) Cm E, M, F thẳng hàng.
Cho ΔABC vuông tại A (AB < AC). Gọi E là trung điểm BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD.
a) Chứng minh: Tứ giác ABDC là hình chữ nhật.
b) Trên tia CA lấy điểm K sao cho A là trung điểm của CK. Gọi F là trung điểm BK. Chứng minh: Tứ giác ACEF là hình bình hành.
c) Từ D vẽ đường thẳng vuông góc với BC tại H, tia DH cắt đường thẳng FA tại I. Chứng minh: Tứ giác FIEB là hình thang cân.
d) Chứng minh góc FIB = góc CDI.
Cho tam giác ABC vuông tại A(AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Gọi E là điểm đối xứng của C qua A. Chứng minh tứ giác ADBE là hình bình hành.
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.