Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh tứ giác ABDC là hình chữ nhật.
b)Lấy điểm E sao cho B là trung điểm của AE. Chứng minh tứ giác BEDC là hình bình hành. c) Lấy điểm K thuộc đoạn thẳng BD sao cho KD = 2BK. CM: EK, AC, BD là đồng quy
Cho tam giác ABC vuông tại A(AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Gọi E là điểm đối xứng của C qua A. Chứng minh tứ giác ADBE là hình bình hành.
Bài 2. Cho ΔABC vuông tại A có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a, Chứng minh ABCD là hình chữ nhật.
b, Lấy điểm E sao cho B là trung điểm của AE. Chứng minh BEDC là hình bình hành.
c, EM cắt BD tại K. Chứng minh EK = 2KM.
Cho tam giác ABC vuông tại A (AB>AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD=MA.
A) chứng minh tứ giác ABDC là hình chữ nhật
B) gọi E là điểm đối xứng của qua A. Chứng minh tứ giác ADBE là hình bình hành.
C) EM cắt AB tại K và cắt CD tại I. Vẽ IH vuông góc với AB(H thuộc AB). Chứng minh tam giác IKB cân
Cho tam giác ABC vuông tại (AB>AC). Gọi M trung điểm của BC.Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Chứng minh tứ giác ABDC là hình chữ nhật
b) Gọi E là điểm đối xứng của C qua A .Chứng minh tứ giác ADBE là hình bình hành
c) EM cắt AB tại K và cắt CD tại I . Vẽ IH vuông góc AB .Chứng minh tam giác IKB cân
Bài toán 4 : Cho ABC vuông tại A (AB < AC), trung tuyến AM, đường cao AH. Trên tia đối của tia MA lấy điểm D sao cho MD = MA.
a. Tứ giác ABDC là hình gì? Vì sao?
b. Gọi I là điểm đối xứng với A qua BC. Chứng minh BD // ID.
c. Chứng minh tứ giác BIDC là hình thang cân.
Vẽ HE AB tại E, HF AC tại F. Chứng minh AM EF.
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Gọi D là
điểm đối xứng của A qua M.
a) Chứng minh: Tứ giác ABDC là hình chữ nhật
b) Trên tia DC lấy điểm F sao cho DC = CF.
Chứng minh: Tứ giác ABCF là hình bình hành
c) Gọi E là trung điểm của AC. Kẻ CH ⊥ EF. Chứng minh: AH ⊥ HD
6 Cho tam giác ABC vuông tại A (AB < AC ).Vẽ AH vuông góc với BC tại H, gọi M là
trung điểm của AC, D là điểm đối xứng của H qua M.
a, Chứng minh tứ giác ADCH là hình chữ nhật.
b, Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh tứ giác AKHD là hình
bình hành.
Bài toán 4 : Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Gọi O là trung điểm của BC, D là điểm đối xứng của A qua O. a) Chứng minh tứ giác ABDC là hình chữ nhật. b) Trên tia đối của tia HA lấy điểm E sao cho HE - HA. Chứng minh tam giác AED vuông và tam giác BEC vuông. c) Gọi M, N lần lượt là hình chiều của E lên BD và CD, EM cắt AD tại K. Chứng minh DE = DK.
giúp mk vs ạ !