a: Xét ΔACB vuông tại A và ΔCEG vuông tại C có
góc ACB=góc CEG
=>ΔACB đồng dạng với ΔCEG
b: Xét ΔEAD vuông tại A và ΔECG vuông tại C có
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>ED/EG=EA/EC=DA/DB
=>DA*EG=DB*DE
a: Xét ΔACB vuông tại A và ΔCEG vuông tại C có
góc ACB=góc CEG
=>ΔACB đồng dạng với ΔCEG
b: Xét ΔEAD vuông tại A và ΔECG vuông tại C có
góc AED=góc CEG
=>ΔEAD đồng dạng với ΔECG
=>ED/EG=EA/EC=DA/DB
=>DA*EG=DB*DE
Cho ∆ABC, vẽ đường thẳng song song với BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia Cx song song với AB cắt DE ở G
a) Chứng minh: ∆ADE đồng dạng với ∆CEG
b) Chứng minh: DA.EG = CG.DE
c) Gọi H là giao điểm của AC và BG. Chứng minh: HC^2 = HE.H
Bài 1: Cho ∆ABC, vẽ đường thẳng song song với BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia Cx song song với AB cắt DE ở G.
a) Chứng minh: ∆ABC đồng dạng với ∆CEG.
b) Chứng minh: DA . EG = DB . DE
c) Gọi H là giao điểm của AC và BG. Chứng minh: HC^2 = HE . HA27.
Bài 2 :Cho ∆ABC cân tại A (góc A < 90o). Các đường cao AD và CE cắt nhau tại H.
a) Chứng minh: ∆BEC đồng dạng với ∆BDA.
b) Chứng minh: ∆DHC đồng dạng với ∆DCA. Từ đó suy ra: DC^2 = DH . DA
c) Cho AB = 10cm, AE = 8cm. Tính EC, HC
Cho tam giác ABC vẽ đường thẳng song song với BC cắt AB ở D và cắt AC ở E . Qua C kẻ tia Cx song song với AB cắt DE ở G
a chứng minh: tam giác ABC đồng dạng với tam giác CEG
b chứng minh: DA.EG=DB.DE
c Gọi H là giao điểm cảu AC và BG. Chứng minh: HC^2=HE.HA
Cho tam giác ABC, vẽ đg thẳng song song vs BC cắt AB ở D và cắt AC ở E. Qua C kẻ tia song song với AB cắt DE ở G.
a) CMR: Tam giác ABC đồng dang tam giác CEG(đã làm câu này)
b)CMR: DA . EG bằng DB . DE
c)Gọi H là giao điểm của AC và BG. CMR: HC bình phương bằng HE . HA
Cho , trên cạnh AB lấy điểm D , kẻ DE song song với BC ( ) . Kẻ đường thẳng Cx song song vs AB , Cx cắt đường thẳng DE ở K . Gọi H là giao điểm của AC và BK
a , Chứng minh :
b , Chứng minh ; BC . HE = HC . KE
c , Giả sử diện tích tam giác ABC là 36 ; AD = 2DB . Tính diện tích tam giác BHE
Vẽ hình giúp mik vs ah . lm câu C) thôi ah
Cho tam giác ABC, vẽ đường thẳng song song với BC cắt cạnh AB tại D, cắt cạnh AC tại E. Qua C kẻ Cx song song với AB cắt CE tại G.Gọi H là giao điểm của AC và BG. Kẻ HI// AB ( I thuộc BC)
a) DA. EG= BD. DE
b) HC^2= HE. HA
c) 1/IH= 1/AB+ 1/CG
d) Kéo dài IH cắt AG tại M. Chứng minh 2/IM= 1/AB+1/CG
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cách AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC và BF. Đường thẳng qua H song song với BC tại I. Chứng minh:
a, DA trên DB = ED trên FE
b, HC2 = HA . HE
Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB, AC tại D và E. Qua C kẻ đường thẳng song song với AB cắt DE tại F. Gọi H là giao điểm của AC với BF. Đường thẳng qua H song song với AB cắt BC tại I. Chứng minh rằng:
a. DA/DB = ED/FE
b. HA.HE = HC2