a, \(S_{\Delta ABC}=\frac{1}{2}bc.sinA=\frac{1}{2}.20.35.sin60=175\sqrt{3}\)
\(a=\sqrt{b^2+c^2-2bc.cosA}=5\sqrt{37}\)
\(S_{ABC}=\frac{1}{2}.a.h_a\Rightarrow h_a=\frac{175\sqrt{3}.2}{5\sqrt{37}}=19,9\)
\(m_a=\sqrt{\frac{b^2+c^2}{2}-\frac{a^2}{4}}=\frac{5\sqrt{93}}{2}\)
b, \(cosB=\frac{a^2+c^2-b^2}{2ac}=0,82\Rightarrow\widehat{B}=34^042'\)
\(\widehat{C}=180^0-60^0-34^0=86^0\)
c, \(\frac{a}{sinA}=2R=>R=\frac{5\sqrt{37}}{sin60.2}=17,6\)
\(p=\frac{20+35+5\sqrt{37}}{2}=42,7\)
\(\Rightarrow r=\frac{S}{p}=\frac{175\sqrt{3}}{42,7}=7,1\)