AD/AB = 4/8 = 1/2
AE/AC = 6/12 = 1/2
xét tam giác ABC có AD/AB = AE/AC = 1/2
=> DE // BC (theo dinh li talet đảo)
AD/AB = 4/8 = 1/2
AE/AC = 6/12 = 1/2
xét tam giác ABC có AD/AB = AE/AC = 1/2
=> DE // BC (theo dinh li talet đảo)
Cho ΔABC có AB = 5 cm, AC =7,5cm, BC =6cm. Trên AB, AC lấy điểm D,E sao cho AD= 3cm, AE =2cm
a) Chứng minh ΔADE ~ ΔACB
b) Tính DE
Bài 1: 1) Trên tia Ax lấy các điểm B, C, D theo thứ tự đó đó sao cho cho: AB = 2 cm, BC = 4 cm và CD = 8 cm.
a) Tính các tỷ số số AB/ BC và BC/CD
b) Chứng minh BC2 = AB.CD
2) Trên đường thẳng d , lấy 4 điểm A, B, C, D theo thứ tự đó sao cho cho AB/BC = 3/5, BC/CD = 5/6.
a) Tính tỉ số AB/CD
b) Cho biết AD = 28 cm. Tính độ dài các đoạn thẳng AB, BC và CD
Bài 2: Cho tam giác ABC và các điểm D, E lần lượt nằm trên hai cạnh AB, AC sao cho AD/AB = AE/AC.
a) Chứng minh AD/BD = AE/EC
b) Cho biết AD = 2 cm, BD =1 cm và AE = 4 cm. Tính AC.
Bài 3: Cho tam giác ABC có D, E lần lượt thuộc các cạnh AB và AC sao cho BD/AB = CE/CA.
a) Chứng minh AD/AB = AE/AC
b) Cho biết AD = 2 cm, BD = 1 cm và AC = 4 cm. Tính EC
Bài 4: Cho tam giác ACE có AC = 11 cm. Lấy điểm B trên cạnh AC sao cho BC = 6cm. Lấy điểm D trên cạnh AE sao cho BD song song với EC. Giả sử AE + ED = 25,5 cm. Hãy tính:
a) Tỷ số DE/AE
b) Độ dài các đoạn thẳng AE, DE và AD.
Bài 5: Cho tam giác ABC và điểm D trên cạnh BC sao cho BD/BC = 3/4, điểm E trên đoạn thẳng AD sao cho cho AE/AD = 1/3. Gọi K là giao điểm của BE và AC. a) Tính tỷ số số AK/KC
b) Vẽ hình bình hành ABCM. Trên cạnh MC lấy điểm G sao cho MG= 1/4 MC. Gọi N là giao điểm của AG và BM. Tính tỉ số MN/MB.
Cho tam giác có AB cm = 10 , lần lượt lấy điểm D E, trên AB AC , sao cho AD cm = 6 và DE // BC . Giả sử AE - EC = 3 cm . Hãy tính: a) Tỉ số AE CE b) Độ dài các đoạn thẳng AE,EC,AC.
Cho tam giác ABC cân tại A. Trên các tia AB,AC lần lượt lấy các điểm D,E sao cho AD + AE = AB + AC. Cmr: BC<DE
CÂU 5 ; cho hình ΔABC = 8cm . AC= 12cm . Trên cạnh AB lấy điểm D sao cho BD=2cm , trên cạnh AC lấy điểm E sao cho AE = 9 cm
A, tính tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
B, chứng minh ΔADE đồng dạng ΔABC
C, đường phân giác của BAC cắt BC tại I , chứng minh : IB . AE = IC.AD
cho tam giác ABC. Trên AB,AC lần lượt lấy D,E sao cho AD=1/4 AB,AE=1/2 AC. DE cắt BC tại F. CMR CF=1/2 BC
Cho ΔABC nhọn, một đường thẳng //BC cắt AB,AC lần lượt tại D,E.
a,Tính AB, bt AE/EC=3/4, DB=8
b, Bt AD/DB=EC/AE. CM D,E là trung điểm của AB,AC
Cho ΔABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD=2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm. a) Tính các tỉ số AC AD ; AD AE . b) Chứng minh: ΔADE đồng dạng ΔABC. c) Đường phân giác của góc BAC cắt BC tại I. Chứng minh: IB.AE = IC
Giúp mk zới các bạn ơi!¬¬¬
Cho tam giác ABC, AB= 12, AC =9, BC =18. Điểm D nằm trên AB, điểm E nằm trên AC sao cho AD=3, AE=4 a) tính DE b) DE cắt BC tại F, c/m tam giác FEC đồng dạng vs tam giác FBD c) Tính EF