Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\) (trung tuyến đống thời là đường cao)
Mà \(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
\(\Rightarrow BC\perp\left(SAM\right)\)
Trong tam giác vuông SAM, kẻ đường cao \(AH\perp SM\)
\(\Rightarrow BC\perp AH\Rightarrow AH\perp\left(SBC\right)\)
\(\Rightarrow\widehat{ASH}\) hay \(\widehat{ASM}\) là góc giữa SA và (SBC)
\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}AB\sqrt{2}=\dfrac{a\sqrt{2}}{2}\)
\(tan\widehat{ASM}=\dfrac{AM}{SA}=\dfrac{\sqrt{2}}{2}\Rightarrow\widehat{ASM}\approx35^016'\)