Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB =a. Cạnh bên SA vuông góc với mặt phẳng đáy, góc tạo bởi hai mặt phẳng (ABC) và (SBC) bằng 60 o (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng AB và SC bằng
A. a
B. a 2 2
C. a 3 2
D. a 3 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = 2 a , S A vuông góc với mặt đáy và góc giữa SB với mặt đáy bằng 60 ° . Côsin góc giữa hai mặt phẳng (SBC) và (ABC) bằng
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, cạnh bên SA vuông góc với mặt phẳng đáy, AB=BC=a và SA=a. Góc giữa hai mặt phẳng (SAC) và (SBC) bằng
A. 60⁰.
B. 90⁰.
C. 30⁰.
D. 45⁰.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với đáy ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Tính thể tích V của khối chóp S.ABC.
Hình chóp S.ABC có đáy là tam giác vuông tại B có AB=a, AC=2a, SA vuông góc với mặt phẳng đáy, SA=2a. Gọi φ là góc tạo bởi hai mặt phẳng (SAC), (SBC). Tính cos φ bằng
A. 3 2 .
B. 1 2 .
C. 15 5 .
D. 3 5 .
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, AB=d. Cạnh bên SA vuông góc với mặt phẳng (ABC) và SC hợp với đáy một góc bằng 60°. Gọi (S) là mặt cầu ngoại tiếp khối chóp S.ABC. Tính thể tích khối cầu (S).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC = a 2 , SA vuông góc với mp đáy. Góc tạo bởi (SBC) và mặt đáy bằng bao nhiêu
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C, AB = a 5 , AC = a.. Cạnh bên SA = 3a và vuông góc với mặt phẳng đáy. Thể tích của khối chóp S.ABC bằng:
A. 5 2 a 3
B. 3 a 3
C. a 3
D. 2 a 3
Cho hình chóp S.ABC có đáy là tam giác vuông cân ở A, cạnh 2 3 a . Tam giác SBC cân tại S và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Biết thể tích khối chóp là a 3 , tính góc giữa SA và mặt phẳng (SBC).
A. π 6
B. π 3
C. π 4
D. a r c tan 3 2