Áp dụng dãy số tỉ lệ bằng nhau ta được
\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{x-y}{\left(y+z+t\right)-\left(z+t+x\right)}=\dfrac{x-y}{y-x}=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\left(y+z+t\right)\\y=-\left(z+t+x\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\end{matrix}\right.\)
\(P=\left(\dfrac{x+y}{z+t}\right)^{2024}+\left(\dfrac{y+z}{x+t}\right)^{2025}\)
\(\Rightarrow P=\left[\dfrac{-\left(z+t\right)}{z+t}\right]^{2024}+\left[\dfrac{-\left(x+t\right)}{x+t}\right]^{2025}=\left(-1\right)^{2024}+\left(-1\right)^{2025}=1-1=0\)