Cho x, y là hai số thực thỏa mãn x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1. Chứng minh rằng x 1 + y 2 + y 1 + x 2 = 0.
Cho các số thực dương x, thỏa mãn điều kiện \(2x+3y=5\)
Chứng minh rằng: \(\sqrt{xy+2x+2y+4}+\sqrt{\left(2x+2\right)y}\le5\)
Cho các số thực x,y không âm thỏa mãn điều kiện .Hãy tìm giá trị lớn nhất của biểu thức .
Cho các số thực x, y không âm và thỏa mãn điều kiện: x 2 + y 2 ≤ 2 . Hãy tìm giá trị lớn nhất của biểu thức:
P = x 29 x + 3 y + y 29 y + 3 x
Cho số thực x, y, z thỏa mãn \(x^2+y^2+z^2-2x+4y-6z=15\). Chứng minh rằng: \(\left|2x-3y+4z-20\right|\le29\)
cho số thực x;y thỏa mãn x2+y2=1
tìm min, max của: P=2x+y3
tìm các số nguyên x,y thỏa mãn y2+3y=x4+x2+18