Ta có:
\(x^5+y^5=\left(x^3+y^3\right)\left(x^2+y^2\right)-x^2y^2\left(x+y\right)\)
\(\ge xy\left(x+y\right).2xy-x^2y^2\left(x+y\right)=x^2y^2\left(x+y\right)\)
\(\Rightarrow\dfrac{xy}{x^5+y^5+xy}\le\dfrac{xy}{x^2y^2\left(x+y\right)+xy}=\dfrac{xyz.z}{x^2y^2z^2\left(x+y\right)+xyz.z}=\dfrac{z}{x+y+z}\)
TƯơng tự:
\(\dfrac{yz}{y^5+yz+z^5}\le\dfrac{x}{x+y+z}\) ; \(\dfrac{zx}{z^5+zx+x^5}\le\dfrac{y}{x+y+z}\)
Cộng vế với vế ta có đpcm