Cho các số dương a,b,c thoả mãn a > b CMR:
\(\sqrt{a+c} -\sqrt{a}<\sqrt{b+c}-\sqrt{b}\)
Cho a,b,c là 3 số thực dương thoả mãn a+b+c=1.CMR
\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}=1+\sqrt{bc}+\sqrt{ca}+\sqrt{ab}\)
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
Cho a, b, c là các số thực dương thoả mãn:
\(a+b+c=3\)
và \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
Tính giá trị của biểu thức: \(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}\)
cho a,b,c là các số dương thoả mãn ab+bc+ac=1
Tìm GTNN\(P=\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}+\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}+\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}\)
Cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca\ge3\) tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{a^2+b^2+c^2}{\sqrt{a+2016}+\sqrt{b+2016}+\sqrt{c+2016}}\)
Cho các số thực dương a,b,c thoả mãn \(\sqrt{a}\)-\(\sqrt{b}\)-\(\sqrt{c}\)=\(\sqrt{a+b-c}\).
CMR: \(\sqrt[2016]{a}\)+\(\sqrt[2016]{b}\)-\(\sqrt[2016]{c}\)=\(\sqrt[2016]{a+b-c}\)
Cho 3 số thực dương a,b.c thỏa mãn abc=1 cmr:\(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)