Ta có:\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
TT\(\Rightarrow c^2+d^2\ge2cd\)
BĐT\(\Leftrightarrow3ab+3cd\ge6\)
\(\Leftrightarrow ab+cd\ge2\)
Lại có \(ab+cd\ge2\sqrt{abcd}=2\)
\(\Rightarrowđpcm\)
Áp dụng bất đẳng thức: \(x^2+y^2\ge2xy\) ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2bc+ab+cd=3\left(ab+cd\right)\)Mặt khác: \(3\left(ab+cd\right)=3\left(ab+\frac{abcd}{ab}\right)=3\left(ab+\frac{1}{cd}\right)\ge3.2=6\) \(\left(BĐT:\frac{a}{b}+\frac{b}{a}\ge2\right)\)
Vậy \(a^2+b^2+c^2+d^2+ab+cd\ge6\)(đpcm)