\(\sqrt{\dfrac{a}{b}}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=2\sqrt{\dfrac{a}{b}}\)
\(\sqrt{\dfrac{a}{b}}+\dfrac{a}{b}\sqrt{\dfrac{b}{a}}=\sqrt{\dfrac{a}{b}}+\sqrt{\dfrac{a}{b}}=2\sqrt{\dfrac{a}{b}}\)
cho biểu thức p=\(\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)với a lớn hơn bằng 0,b lớn hơn bằng 0,a khác b
a rút gọn p
b cm p lớn hơn bằng 0
Cho x>0 và x≠1, giá trị nhỏ nhất của biểu thức P= \(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) bằng \(\dfrac{a}{b}\)(với a,b là các số nguyên dương và \(\dfrac{a}{b}\) (với a,b là các số nguyên dương và \(\dfrac{a}{b}\) phân số tối giảm). Giá trị a+b bằng
A, 5
B. 9
C. 7
D. 6
Cho các số a,b,c>0 và a+b+c\(\le\dfrac{3}{2}\).Tìm GTNN của biểu thức
\(Q=\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
cho biểu thức M=\(\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}-\dfrac{a}{\sqrt{a}+\sqrt{b}}-\dfrac{b}{\sqrt{b}-\sqrt{a}}\) với a,b>0 và a khác b
Rút gọn M và tính giá trị biểu thức M biết (1-a).(1-b)+\(2\sqrt{ab}=1\)
1) Cho biểu thức B=(\(\dfrac{1}{3-\sqrt{x}}\)-\(\dfrac{1}{3+\sqrt{x}}\)) . \(\dfrac{3+\sqrt{x}}{\sqrt{x}}\) ( với x>0; x≠9)
a) Rút gọn biểu thức B
b) Tìm các giá trị của x để B>0
cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)-\(\dfrac{2}{\sqrt{x}-1}\)-\(\dfrac{2}{x-1}\)( với x> hoặc bằng 0, x khác 1) và B=\(\dfrac{\sqrt{x}-1}{\sqrt{x}}\) ( với x >0)
a) Rút gòn a ( ko cần làm vì mk làm rùi)
b) Tính giá trị của B khi \(^{4x^2+x-5=0}\)
c) Tìm m để có giá trị x thỏa mãn 2A+mB=0
Giúp mk b với c với
Cho \(a,b>0\) thỏa mãn \(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=2\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{ab}}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Rút gọn các biểu thức sau:
a) A=\(\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)(x≥0 , y≥0 , xy≠0)
b) B=\(\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)(x≥0 , y≥0 , x≠y)
c) C=\(\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)(a≥0 , a≠\(\dfrac{1}{4}\))
d) D=\(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)(a≥0 , a≠4)
Với \(x>0\) cho 2 biểu thức \(A=\dfrac{2+\sqrt{x}}{\sqrt{x}}\) và \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
1) Tính giá trị của biểu thức A khi \(x=64\)
2) Rút gọn biểu thức B
3) Tìm x để \(\dfrac{A}{B}>\dfrac{3}{2}\)