a: Khi a=16 thì \(A=\dfrac{4+1}{4-3}=5\)
b: \(P=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}:\dfrac{2a-6\sqrt{a}+a+3\sqrt{a}-3a-3}{a-9}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}:\dfrac{-3\left(\sqrt{a}+1\right)}{a-9}=\dfrac{-\sqrt{a}-3}{3}\)
`(a):\ a=16(TMDK)=>A=(\sqrt{16}+1)/(\sqrt{16}-3)=(4+1)/(4-3)=5`
`(b):\ B=(2\sqrt{a})/(\sqrt{a}+3)+(\sqrt{a})/(\sqrt{a}-3)-(3a+3)/((\sqrt{a}-3)(\sqrt{a}+3))\ (a\ge0;a\ne 9)`
`=(2\sqrt{a}(\sqrt{a}-3)+\sqrt{a}(\sqrt{a}+3)-(3a+3))/((\sqrt{a}-3)(\sqrt{a}+3))`
`=(2a-6\sqrt{a}+a+3\sqrt{a}-3a-3)/((\sqrt{a}-3)(\sqrt{a}+3))`
`=(-3\sqrt{a}-3)/((\sqrt{a}-3)(\sqrt{a}+3))`
``
`P=A/B\ (ĐK:x\ge 0;x\ne 9)`
`=(\sqrt{a}+1)/(\sqrt{a}-3):(-3(\sqrt{a}+1))/((\sqrt{a}-3)(\sqrt{a}+3))`
`=(\sqrt{a}+1)/(\sqrt{a}-3).((\sqrt{a}-3)(\sqrt{a}+3))/(-3(\sqrt{a}+1))`
`=-(\sqrt{a}+3)/(3)`
`(c):\ P-1=-(\sqrt{a}+3)/(3)-1=(-\sqrt{a}-3-3)/(3)`
`=(-\sqrt{a}-6)/(3)=-(\sqrt{a}+6)/(3)`
Vì : `\sqrt{a}+6 \ge 6>0` với mọi `x\in ĐK`
`=>(\sqrt{a}+6)/(3) >0`
`=>-(\sqrt{a}+6)/(3)<0`
Hay `P-1<0`
Vậy `P<1`